mtasic85's picture
contrain instruct datasets
f6fa207
import gc
from typing import Union, Optional, Iterator, Callable
import torch
from datasets import load_dataset
from litgpt.tokenizer import Tokenizer
from transformers import AutoTokenizer
def _batch_text_iterator(path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
format: Optional[Callable|str]=None) -> Iterator[str]:
assert isinstance(format, str) or callable(format), repr(format)
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(format):
for row in dataset:
text = format(row)
yield text
else:
for row in dataset:
text = format.format(**row)
yield text
del dataset
gc.collect()
def _batch_chat_iterator(path: str,
name: Optional[str]=None,
data_dir: Optional[str]=None,
data_files: Optional[str]=None,
keep_in_memory: bool=False,
revision: Optional[str]=None,
split: str='train',
num_proc: Optional[int]=None,
field: Optional[str]=None,
transform: Optional[Callable]=None) -> Iterator[list[dict[str, str]]]:
dataset = load_dataset(path=path,
name=name,
data_dir=data_dir,
data_files=data_files,
keep_in_memory=keep_in_memory,
revision=revision,
split=split,
trust_remote_code=True,
num_proc=num_proc)
if callable(transform):
for row in dataset:
if field:
messages = transform(row[field])
else:
messages = transform(row)
yield messages
else:
for row in dataset:
if field:
messages = row[field]
else:
raise ValueError(field)
yield messages
del dataset
gc.collect()
def batch_text_iterator(dataset_config: Union[list, dict]) -> Iterator[str]:
assert isinstance(dataset_config, (dict, list)), dataset_config
if isinstance(dataset_config, dict):
for text in _batch_text_iterator(**dataset_config):
yield text
elif isinstance(dataset_config, list):
for dc in dataset_config:
for text in _batch_text_iterator(**dc):
yield text
def batch_chat_iterator(dataset_config: Union[list, dict]) -> Iterator[list[dict[str, str]]]:
assert isinstance(dataset_config, (dict, list)), dataset_config
if isinstance(dataset_config, dict):
for messages in _batch_chat_iterator(**dataset_config):
yield messages
elif isinstance(dataset_config, list):
for dc in dataset_config:
for messages in _batch_chat_iterator(**dc):
yield messages
def tokenize_text_fn(dataset_config: list, tokenizer: Tokenizer, min_len: Optional[int]=None, max_len: Optional[int]=None) -> Iterator[torch.Tensor]:
for text in batch_text_iterator(dataset_config):
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=True)
if min_len is None and max_len is None:
yield text_ids
if min_len is None:
min_len = 0
if max_len is None:
max_len = len(text_ids)
if min_len <= len(text_ids) <= max_len:
yield text_ids
def tokenize_chat_fn(dataset_config: list, hf_tokenizer: AutoTokenizer, tokenizer: Tokenizer, min_len: Optional[int]=None, max_len: Optional[int]=None) -> Iterator[torch.Tensor]:
for messages in batch_chat_iterator(dataset_config):
# text_ids: torch.Tensor = tokenizer.apply_chat_template(messages, tokenize=True, return_tensors='pt')
# text_ids = text_ids.to(torch.int)
text: str = hf_tokenizer.apply_chat_template(messages, tokenize=False)
text_ids: torch.Tensor = tokenizer.encode(text, bos=False, eos=False)
if min_len is None and max_len is None:
yield text_ids
if min_len is None:
min_len = 0
if max_len is None:
max_len = len(text_ids)
if min_len <= len(text_ids) <= max_len:
yield text_ids