prepare dataset
Browse files- scripts/TRAIN.md +0 -0
- scripts/model.yaml +143 -0
- scripts/prepare_contrain_dataset.py +142 -0
- scripts/requirements.in +11 -0
scripts/TRAIN.md
ADDED
File without changes
|
scripts/model.yaml
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
|
2 |
+
# ``model_config``. (type: Optional[str], default: null)
|
3 |
+
model_name: "tiny-llama-1.1b"
|
4 |
+
|
5 |
+
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
|
6 |
+
# ``model_config``. (type: Optional[Config], default: null)
|
7 |
+
model_config:
|
8 |
+
padded_vocab_size: 32768
|
9 |
+
vocab_size: 32768
|
10 |
+
block_size: 32768
|
11 |
+
n_layer: 10
|
12 |
+
n_head: 12
|
13 |
+
head_size: null
|
14 |
+
n_embd: 312
|
15 |
+
n_query_groups: 4
|
16 |
+
rotary_percentage: 1.0
|
17 |
+
parallel_residual: false
|
18 |
+
bias: false
|
19 |
+
norm_class_name: "RMSNorm"
|
20 |
+
norm_eps: 1e-05
|
21 |
+
mlp_class_name: "LLaMAMLP"
|
22 |
+
intermediate_size: 1092
|
23 |
+
rope_base: 500000
|
24 |
+
|
25 |
+
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
|
26 |
+
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
|
27 |
+
out_dir: "../out/contrain/"
|
28 |
+
|
29 |
+
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
|
30 |
+
# precision: bf16-mixed
|
31 |
+
precision: bf16-true
|
32 |
+
|
33 |
+
# Optional path to a checkpoint directory to initialize the model from.
|
34 |
+
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
|
35 |
+
initial_checkpoint_dir: "tangledgroup/tangled-llama-33m-32k-base-v0.1"
|
36 |
+
|
37 |
+
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
|
38 |
+
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
|
39 |
+
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
|
40 |
+
# (type: Union[bool, Literal["auto"], Path], default: False)
|
41 |
+
# resume: false
|
42 |
+
resume: "auto"
|
43 |
+
|
44 |
+
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
|
45 |
+
data:
|
46 |
+
class_path: LitData
|
47 |
+
|
48 |
+
init_args:
|
49 |
+
data_path: "../data/"
|
50 |
+
num_workers: 16
|
51 |
+
seq_length: 32768
|
52 |
+
|
53 |
+
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
|
54 |
+
train:
|
55 |
+
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
|
56 |
+
save_interval: 1000
|
57 |
+
|
58 |
+
# Number of iterations between logging calls (type: int, default: 1)
|
59 |
+
log_interval: 1
|
60 |
+
|
61 |
+
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 512)
|
62 |
+
global_batch_size: 512
|
63 |
+
|
64 |
+
# Number of samples per data-parallel rank (type: int, default: 4)
|
65 |
+
micro_batch_size: 16
|
66 |
+
# micro_batch_size: 14
|
67 |
+
|
68 |
+
# Number of iterations with learning rate warmup active (type: int, default: 2000)
|
69 |
+
lr_warmup_steps: 2000
|
70 |
+
|
71 |
+
# Number of epochs to train on (type: Optional[int], default: null)
|
72 |
+
epochs:
|
73 |
+
|
74 |
+
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
|
75 |
+
# max_tokens: 3000000000000
|
76 |
+
max_tokens: 9782206713 # 1591379 * 2049 * 3
|
77 |
+
|
78 |
+
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
|
79 |
+
max_steps:
|
80 |
+
|
81 |
+
# Limits the length of samples. Off by default (type: Optional[int], default: null)
|
82 |
+
max_seq_length: 32768
|
83 |
+
|
84 |
+
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
|
85 |
+
tie_embeddings:
|
86 |
+
|
87 |
+
# (type: Optional[float], default: 1.0)
|
88 |
+
max_norm: 1.0
|
89 |
+
|
90 |
+
# (type: float, default: 4e-05)
|
91 |
+
min_lr: 4.0e-05
|
92 |
+
|
93 |
+
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
|
94 |
+
eval:
|
95 |
+
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
|
96 |
+
interval: 100
|
97 |
+
|
98 |
+
# Number of tokens to generate (type: Optional[int], default: null)
|
99 |
+
max_new_tokens:
|
100 |
+
|
101 |
+
# Number of iterations (type: int, default: 100)
|
102 |
+
max_iters: 100
|
103 |
+
|
104 |
+
# Whether to evaluate on the validation set at the beginning of the training
|
105 |
+
initial_validation: false
|
106 |
+
|
107 |
+
# Whether to evaluate on the validation set at the end the training
|
108 |
+
final_validation: true
|
109 |
+
|
110 |
+
# Optimizer-related arguments
|
111 |
+
optimizer:
|
112 |
+
# class_path: torch.optim.AdamW
|
113 |
+
class_path: grokadamw.GrokAdamW
|
114 |
+
# class_path: bitsandbytes.optim.AdamW8bit
|
115 |
+
# class_path: bitsandbytes.optim.PagedAdamW8bit
|
116 |
+
|
117 |
+
init_args:
|
118 |
+
# (type: float, default: 0.001)
|
119 |
+
lr: 1.0e-3
|
120 |
+
|
121 |
+
# (type: float, default: 0.01)
|
122 |
+
weight_decay: 0.1
|
123 |
+
|
124 |
+
# (type: tuple, default: (0.9,0.999))
|
125 |
+
betas:
|
126 |
+
- 0.9
|
127 |
+
- 0.95
|
128 |
+
|
129 |
+
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
|
130 |
+
devices: auto
|
131 |
+
|
132 |
+
# How many nodes to use. (type: int, default: 1)
|
133 |
+
num_nodes: 1
|
134 |
+
|
135 |
+
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
|
136 |
+
# module require this. (type: Optional[Path], default: null)
|
137 |
+
tokenizer_dir: "../"
|
138 |
+
|
139 |
+
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
|
140 |
+
logger_name: "wandb"
|
141 |
+
|
142 |
+
# The random seed to use for reproducibility. (type: int, default: 42)
|
143 |
+
seed: 42
|
scripts/prepare_contrain_dataset.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
|
3 |
+
from datasets import load_dataset
|
4 |
+
from litdata import optimize, TokensLoader
|
5 |
+
from litgpt.tokenizer import Tokenizer
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
|
9 |
+
def batch_iterator(name=None):
|
10 |
+
if name in (None, 'Replete-AI/Everything_Instruct_Multilingual'):
|
11 |
+
dataset = load_dataset('Replete-AI/Everything_Instruct_Multilingual', split='train')
|
12 |
+
|
13 |
+
for row in dataset:
|
14 |
+
text = []
|
15 |
+
|
16 |
+
if row['instruction']:
|
17 |
+
text.append(
|
18 |
+
'<|im_start|>system\n'
|
19 |
+
f"{row['instruction']}<|im_end|>"
|
20 |
+
)
|
21 |
+
|
22 |
+
if row['input']:
|
23 |
+
text.append(
|
24 |
+
'<|im_start|>user\n'
|
25 |
+
f"{row['input']}<|im_end|>"
|
26 |
+
)
|
27 |
+
|
28 |
+
if row['output']:
|
29 |
+
text.append(
|
30 |
+
'<|im_start|>assistant\n'
|
31 |
+
f"{row['output']}<|im_end|>"
|
32 |
+
)
|
33 |
+
|
34 |
+
text = '\n'.join(text) + '\n'
|
35 |
+
yield text
|
36 |
+
break
|
37 |
+
|
38 |
+
del dataset
|
39 |
+
gc.collect()
|
40 |
+
|
41 |
+
if name in (None, 'HuggingFaceH4/ultrachat_200k'):
|
42 |
+
dataset = load_dataset('HuggingFaceH4/ultrachat_200k', split='train_sft')
|
43 |
+
|
44 |
+
for row in dataset:
|
45 |
+
text = [
|
46 |
+
f"<|im_start|>{n['role']}\n{n['content']}<|im_end|>"
|
47 |
+
for n in row['messages']
|
48 |
+
]
|
49 |
+
|
50 |
+
text = '\n'.join(text) + '\n'
|
51 |
+
yield text
|
52 |
+
break
|
53 |
+
|
54 |
+
del dataset
|
55 |
+
gc.collect()
|
56 |
+
|
57 |
+
if name in (None, 'HuggingFaceH4/no_robots'):
|
58 |
+
dataset = load_dataset('HuggingFaceH4/no_robots', split='train')
|
59 |
+
|
60 |
+
for row in dataset:
|
61 |
+
text = [
|
62 |
+
f"<|im_start|>{n['role']}\n{n['content']}<|im_end|>"
|
63 |
+
for n in row['messages']
|
64 |
+
]
|
65 |
+
|
66 |
+
text = '\n'.join(text) + '\n'
|
67 |
+
yield text
|
68 |
+
break
|
69 |
+
|
70 |
+
del dataset
|
71 |
+
gc.collect()
|
72 |
+
|
73 |
+
if name in (None, 'datatab/ultrafeedback_binarized_serbian'):
|
74 |
+
dataset = load_dataset('datatab/ultrafeedback_binarized_serbian', split='train_sft')
|
75 |
+
|
76 |
+
for row in dataset:
|
77 |
+
text = [
|
78 |
+
f"<|im_start|>{n['role']}\n{n['content']}<|im_end|>"
|
79 |
+
for n in row['chosen']
|
80 |
+
]
|
81 |
+
|
82 |
+
text = '\n'.join(text) + '\n'
|
83 |
+
yield text
|
84 |
+
break
|
85 |
+
|
86 |
+
del dataset
|
87 |
+
gc.collect()
|
88 |
+
|
89 |
+
if name in (None, 'datatab/alpaca-cleaned-serbian-full'):
|
90 |
+
dataset = load_dataset('datatab/alpaca-cleaned-serbian-full', split='train')
|
91 |
+
|
92 |
+
for row in dataset:
|
93 |
+
text = []
|
94 |
+
|
95 |
+
if row['instruction']:
|
96 |
+
text.append(
|
97 |
+
'<|im_start|>system\n'
|
98 |
+
f"{row['instruction']}<|im_end|>"
|
99 |
+
)
|
100 |
+
|
101 |
+
if row['input']:
|
102 |
+
text.append(
|
103 |
+
'<|im_start|>user\n'
|
104 |
+
f"{row['input']}<|im_end|>"
|
105 |
+
)
|
106 |
+
|
107 |
+
if row['output']:
|
108 |
+
text.append(
|
109 |
+
'<|im_start|>assistant\n'
|
110 |
+
f"{row['output']}<|im_end|>"
|
111 |
+
)
|
112 |
+
|
113 |
+
text = '\n'.join(text) + '\n'
|
114 |
+
yield text
|
115 |
+
break
|
116 |
+
|
117 |
+
del dataset
|
118 |
+
gc.collect()
|
119 |
+
|
120 |
+
|
121 |
+
def tokenize_fn(dataset_name, tokenizer=None):
|
122 |
+
for text in batch_iterator(dataset_name):
|
123 |
+
text_ids = tokenizer.encode(text, bos=False, eos=True)
|
124 |
+
yield text_ids
|
125 |
+
|
126 |
+
|
127 |
+
datasets_names = [
|
128 |
+
'Replete-AI/Everything_Instruct_Multilingual',
|
129 |
+
'HuggingFaceH4/ultrachat_200k',
|
130 |
+
'HuggingFaceH4/no_robots',
|
131 |
+
'datatab/ultrafeedback_binarized_serbian',
|
132 |
+
'datatab/alpaca-cleaned-serbian-full',
|
133 |
+
]
|
134 |
+
|
135 |
+
outputs = optimize(
|
136 |
+
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
|
137 |
+
inputs=datasets_names,
|
138 |
+
output_dir='../data/',
|
139 |
+
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
|
140 |
+
chunk_size=((32768 + 1) * 500),
|
141 |
+
num_workers=16,
|
142 |
+
)
|
scripts/requirements.in
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
|
2 |
+
tqdm
|
3 |
+
datasets
|
4 |
+
jinja2
|
5 |
+
transformers
|
6 |
+
bitsandbytes
|
7 |
+
wandb
|
8 |
+
# litgpt[all]
|
9 |
+
litgpt[all] @ git+https://github.com/Lightning-AI/litgpt.git
|
10 |
+
litdata
|
11 |
+
grokadamw
|