--- pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb language: en inference: false license: apache-2.0 model-index: - name: final_base_results results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 86.2089552238806 - type: ap value: 55.76273850794966 - type: f1 value: 81.26104211414781 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.35995000000001 - type: ap value: 84.18839957309655 - type: f1 value: 88.317619250081 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.64 - type: f1 value: 42.48663956478136 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 27.383000000000003 - type: map_at_10 value: 43.024 - type: map_at_100 value: 44.023 - type: map_at_1000 value: 44.025999999999996 - type: map_at_3 value: 37.684 - type: map_at_5 value: 40.884 - type: mrr_at_1 value: 28.094 - type: mrr_at_10 value: 43.315 - type: mrr_at_100 value: 44.313 - type: mrr_at_1000 value: 44.317 - type: mrr_at_3 value: 37.862 - type: mrr_at_5 value: 41.155 - type: ndcg_at_1 value: 27.383000000000003 - type: ndcg_at_10 value: 52.032000000000004 - type: ndcg_at_100 value: 56.19499999999999 - type: ndcg_at_1000 value: 56.272 - type: ndcg_at_3 value: 41.166000000000004 - type: ndcg_at_5 value: 46.92 - type: precision_at_1 value: 27.383000000000003 - type: precision_at_10 value: 8.087 - type: precision_at_100 value: 0.989 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 17.093 - type: precision_at_5 value: 13.044 - type: recall_at_1 value: 27.383000000000003 - type: recall_at_10 value: 80.868 - type: recall_at_100 value: 98.86200000000001 - type: recall_at_1000 value: 99.431 - type: recall_at_3 value: 51.28 - type: recall_at_5 value: 65.22 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 39.68441054431849 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 29.188539728343844 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.173362687519784 - type: mrr value: 76.18860748362133 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 82.30789953771232 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 77.03571428571428 - type: f1 value: 75.87384305045917 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 32.98041170516364 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 25.71652988451154 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 33.739999999999995 - type: map_at_10 value: 46.197 - type: map_at_100 value: 47.814 - type: map_at_1000 value: 47.934 - type: map_at_3 value: 43.091 - type: map_at_5 value: 44.81 - type: mrr_at_1 value: 41.059 - type: mrr_at_10 value: 52.292 - type: mrr_at_100 value: 52.978 - type: mrr_at_1000 value: 53.015 - type: mrr_at_3 value: 49.976 - type: mrr_at_5 value: 51.449999999999996 - type: ndcg_at_1 value: 41.059 - type: ndcg_at_10 value: 52.608 - type: ndcg_at_100 value: 57.965 - type: ndcg_at_1000 value: 59.775999999999996 - type: ndcg_at_3 value: 48.473 - type: ndcg_at_5 value: 50.407999999999994 - type: precision_at_1 value: 41.059 - type: precision_at_10 value: 9.943 - type: precision_at_100 value: 1.6070000000000002 - type: precision_at_1000 value: 0.20500000000000002 - type: precision_at_3 value: 23.413999999999998 - type: precision_at_5 value: 16.481 - type: recall_at_1 value: 33.739999999999995 - type: recall_at_10 value: 63.888999999999996 - type: recall_at_100 value: 85.832 - type: recall_at_1000 value: 97.475 - type: recall_at_3 value: 51.953 - type: recall_at_5 value: 57.498000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.169999999999998 - type: map_at_10 value: 41.455 - type: map_at_100 value: 42.716 - type: map_at_1000 value: 42.847 - type: map_at_3 value: 38.568999999999996 - type: map_at_5 value: 40.099000000000004 - type: mrr_at_1 value: 39.427 - type: mrr_at_10 value: 47.818 - type: mrr_at_100 value: 48.519 - type: mrr_at_1000 value: 48.558 - type: mrr_at_3 value: 45.86 - type: mrr_at_5 value: 46.936 - type: ndcg_at_1 value: 39.427 - type: ndcg_at_10 value: 47.181 - type: ndcg_at_100 value: 51.737 - type: ndcg_at_1000 value: 53.74 - type: ndcg_at_3 value: 43.261 - type: ndcg_at_5 value: 44.891 - type: precision_at_1 value: 39.427 - type: precision_at_10 value: 8.847 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.189 - type: precision_at_3 value: 20.785999999999998 - type: precision_at_5 value: 14.560999999999998 - type: recall_at_1 value: 31.169999999999998 - type: recall_at_10 value: 56.971000000000004 - type: recall_at_100 value: 76.31400000000001 - type: recall_at_1000 value: 88.93900000000001 - type: recall_at_3 value: 45.208 - type: recall_at_5 value: 49.923 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 39.682 - type: map_at_10 value: 52.766000000000005 - type: map_at_100 value: 53.84100000000001 - type: map_at_1000 value: 53.898 - type: map_at_3 value: 49.291000000000004 - type: map_at_5 value: 51.365 - type: mrr_at_1 value: 45.266 - type: mrr_at_10 value: 56.093 - type: mrr_at_100 value: 56.763 - type: mrr_at_1000 value: 56.793000000000006 - type: mrr_at_3 value: 53.668000000000006 - type: mrr_at_5 value: 55.1 - type: ndcg_at_1 value: 45.266 - type: ndcg_at_10 value: 58.836 - type: ndcg_at_100 value: 62.863 - type: ndcg_at_1000 value: 63.912 - type: ndcg_at_3 value: 53.19199999999999 - type: ndcg_at_5 value: 56.125 - type: precision_at_1 value: 45.266 - type: precision_at_10 value: 9.492 - type: precision_at_100 value: 1.236 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 23.762 - type: precision_at_5 value: 16.414 - type: recall_at_1 value: 39.682 - type: recall_at_10 value: 73.233 - type: recall_at_100 value: 90.335 - type: recall_at_1000 value: 97.452 - type: recall_at_3 value: 58.562000000000005 - type: recall_at_5 value: 65.569 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.743 - type: map_at_10 value: 34.016000000000005 - type: map_at_100 value: 35.028999999999996 - type: map_at_1000 value: 35.113 - type: map_at_3 value: 31.763 - type: map_at_5 value: 33.013999999999996 - type: mrr_at_1 value: 28.927000000000003 - type: mrr_at_10 value: 36.32 - type: mrr_at_100 value: 37.221 - type: mrr_at_1000 value: 37.281 - type: mrr_at_3 value: 34.105000000000004 - type: mrr_at_5 value: 35.371 - type: ndcg_at_1 value: 28.927000000000003 - type: ndcg_at_10 value: 38.474000000000004 - type: ndcg_at_100 value: 43.580000000000005 - type: ndcg_at_1000 value: 45.64 - type: ndcg_at_3 value: 34.035 - type: ndcg_at_5 value: 36.186 - type: precision_at_1 value: 28.927000000000003 - type: precision_at_10 value: 5.74 - type: precision_at_100 value: 0.8710000000000001 - type: precision_at_1000 value: 0.108 - type: precision_at_3 value: 14.124 - type: precision_at_5 value: 9.74 - type: recall_at_1 value: 26.743 - type: recall_at_10 value: 49.955 - type: recall_at_100 value: 73.904 - type: recall_at_1000 value: 89.133 - type: recall_at_3 value: 38.072 - type: recall_at_5 value: 43.266 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.928 - type: map_at_10 value: 23.549 - type: map_at_100 value: 24.887 - type: map_at_1000 value: 25.018 - type: map_at_3 value: 21.002000000000002 - type: map_at_5 value: 22.256 - type: mrr_at_1 value: 21.02 - type: mrr_at_10 value: 27.898 - type: mrr_at_100 value: 29.018 - type: mrr_at_1000 value: 29.099999999999998 - type: mrr_at_3 value: 25.456 - type: mrr_at_5 value: 26.625 - type: ndcg_at_1 value: 21.02 - type: ndcg_at_10 value: 28.277 - type: ndcg_at_100 value: 34.54 - type: ndcg_at_1000 value: 37.719 - type: ndcg_at_3 value: 23.707 - type: ndcg_at_5 value: 25.482 - type: precision_at_1 value: 21.02 - type: precision_at_10 value: 5.361 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 11.401 - type: precision_at_5 value: 8.209 - type: recall_at_1 value: 16.928 - type: recall_at_10 value: 38.601 - type: recall_at_100 value: 65.759 - type: recall_at_1000 value: 88.543 - type: recall_at_3 value: 25.556 - type: recall_at_5 value: 30.447000000000003 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.549000000000003 - type: map_at_10 value: 38.426 - type: map_at_100 value: 39.845000000000006 - type: map_at_1000 value: 39.956 - type: map_at_3 value: 35.372 - type: map_at_5 value: 37.204 - type: mrr_at_1 value: 35.034 - type: mrr_at_10 value: 44.041000000000004 - type: mrr_at_100 value: 44.95 - type: mrr_at_1000 value: 44.997 - type: mrr_at_3 value: 41.498000000000005 - type: mrr_at_5 value: 43.077 - type: ndcg_at_1 value: 35.034 - type: ndcg_at_10 value: 44.218 - type: ndcg_at_100 value: 49.958000000000006 - type: ndcg_at_1000 value: 52.019000000000005 - type: ndcg_at_3 value: 39.34 - type: ndcg_at_5 value: 41.892 - type: precision_at_1 value: 35.034 - type: precision_at_10 value: 7.911 - type: precision_at_100 value: 1.26 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 18.511 - type: precision_at_5 value: 13.205 - type: recall_at_1 value: 28.549000000000003 - type: recall_at_10 value: 56.035999999999994 - type: recall_at_100 value: 79.701 - type: recall_at_1000 value: 93.149 - type: recall_at_3 value: 42.275 - type: recall_at_5 value: 49.097 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.391000000000002 - type: map_at_10 value: 39.48 - type: map_at_100 value: 40.727000000000004 - type: map_at_1000 value: 40.835 - type: map_at_3 value: 36.234 - type: map_at_5 value: 37.877 - type: mrr_at_1 value: 35.959 - type: mrr_at_10 value: 44.726 - type: mrr_at_100 value: 45.531 - type: mrr_at_1000 value: 45.582 - type: mrr_at_3 value: 42.047000000000004 - type: mrr_at_5 value: 43.611 - type: ndcg_at_1 value: 35.959 - type: ndcg_at_10 value: 45.303 - type: ndcg_at_100 value: 50.683 - type: ndcg_at_1000 value: 52.818 - type: ndcg_at_3 value: 39.987 - type: ndcg_at_5 value: 42.243 - type: precision_at_1 value: 35.959 - type: precision_at_10 value: 8.241999999999999 - type: precision_at_100 value: 1.274 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.836 - type: precision_at_5 value: 13.196 - type: recall_at_1 value: 29.391000000000002 - type: recall_at_10 value: 57.364000000000004 - type: recall_at_100 value: 80.683 - type: recall_at_1000 value: 94.918 - type: recall_at_3 value: 42.263 - type: recall_at_5 value: 48.634 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.791749999999997 - type: map_at_10 value: 35.75541666666667 - type: map_at_100 value: 37.00791666666667 - type: map_at_1000 value: 37.12408333333333 - type: map_at_3 value: 33.02966666666667 - type: map_at_5 value: 34.56866666666667 - type: mrr_at_1 value: 31.744333333333337 - type: mrr_at_10 value: 39.9925 - type: mrr_at_100 value: 40.86458333333333 - type: mrr_at_1000 value: 40.92175000000001 - type: mrr_at_3 value: 37.68183333333334 - type: mrr_at_5 value: 39.028499999999994 - type: ndcg_at_1 value: 31.744333333333337 - type: ndcg_at_10 value: 40.95008333333334 - type: ndcg_at_100 value: 46.25966666666667 - type: ndcg_at_1000 value: 48.535333333333334 - type: ndcg_at_3 value: 36.43333333333333 - type: ndcg_at_5 value: 38.602333333333334 - type: precision_at_1 value: 31.744333333333337 - type: precision_at_10 value: 7.135166666666666 - type: precision_at_100 value: 1.1535833333333334 - type: precision_at_1000 value: 0.15391666666666665 - type: precision_at_3 value: 16.713 - type: precision_at_5 value: 11.828416666666666 - type: recall_at_1 value: 26.791749999999997 - type: recall_at_10 value: 51.98625 - type: recall_at_100 value: 75.30358333333334 - type: recall_at_1000 value: 91.05433333333333 - type: recall_at_3 value: 39.39583333333333 - type: recall_at_5 value: 45.05925 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.219 - type: map_at_10 value: 29.162 - type: map_at_100 value: 30.049999999999997 - type: map_at_1000 value: 30.144 - type: map_at_3 value: 27.204 - type: map_at_5 value: 28.351 - type: mrr_at_1 value: 25.153 - type: mrr_at_10 value: 31.814999999999998 - type: mrr_at_100 value: 32.573 - type: mrr_at_1000 value: 32.645 - type: mrr_at_3 value: 29.934 - type: mrr_at_5 value: 30.946 - type: ndcg_at_1 value: 25.153 - type: ndcg_at_10 value: 33.099000000000004 - type: ndcg_at_100 value: 37.768 - type: ndcg_at_1000 value: 40.331 - type: ndcg_at_3 value: 29.473 - type: ndcg_at_5 value: 31.206 - type: precision_at_1 value: 25.153 - type: precision_at_10 value: 5.183999999999999 - type: precision_at_100 value: 0.8170000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 12.831999999999999 - type: precision_at_5 value: 8.895999999999999 - type: recall_at_1 value: 22.219 - type: recall_at_10 value: 42.637 - type: recall_at_100 value: 64.704 - type: recall_at_1000 value: 83.963 - type: recall_at_3 value: 32.444 - type: recall_at_5 value: 36.802 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.427999999999997 - type: map_at_10 value: 24.029 - type: map_at_100 value: 25.119999999999997 - type: map_at_1000 value: 25.257 - type: map_at_3 value: 22.016 - type: map_at_5 value: 23.143 - type: mrr_at_1 value: 21.129 - type: mrr_at_10 value: 27.750000000000004 - type: mrr_at_100 value: 28.666999999999998 - type: mrr_at_1000 value: 28.754999999999995 - type: mrr_at_3 value: 25.849 - type: mrr_at_5 value: 26.939999999999998 - type: ndcg_at_1 value: 21.129 - type: ndcg_at_10 value: 28.203 - type: ndcg_at_100 value: 33.44 - type: ndcg_at_1000 value: 36.61 - type: ndcg_at_3 value: 24.648999999999997 - type: ndcg_at_5 value: 26.316 - type: precision_at_1 value: 21.129 - type: precision_at_10 value: 5.055 - type: precision_at_100 value: 0.909 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 11.666 - type: precision_at_5 value: 8.3 - type: recall_at_1 value: 17.427999999999997 - type: recall_at_10 value: 36.923 - type: recall_at_100 value: 60.606 - type: recall_at_1000 value: 83.19 - type: recall_at_3 value: 26.845000000000002 - type: recall_at_5 value: 31.247000000000003 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.457000000000004 - type: map_at_10 value: 35.228 - type: map_at_100 value: 36.475 - type: map_at_1000 value: 36.585 - type: map_at_3 value: 32.444 - type: map_at_5 value: 34.046 - type: mrr_at_1 value: 30.784 - type: mrr_at_10 value: 39.133 - type: mrr_at_100 value: 40.11 - type: mrr_at_1000 value: 40.169 - type: mrr_at_3 value: 36.692 - type: mrr_at_5 value: 38.17 - type: ndcg_at_1 value: 30.784 - type: ndcg_at_10 value: 40.358 - type: ndcg_at_100 value: 46.119 - type: ndcg_at_1000 value: 48.428 - type: ndcg_at_3 value: 35.504000000000005 - type: ndcg_at_5 value: 37.864 - type: precision_at_1 value: 30.784 - type: precision_at_10 value: 6.800000000000001 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 15.920000000000002 - type: precision_at_5 value: 11.437 - type: recall_at_1 value: 26.457000000000004 - type: recall_at_10 value: 51.845 - type: recall_at_100 value: 77.046 - type: recall_at_1000 value: 92.892 - type: recall_at_3 value: 38.89 - type: recall_at_5 value: 44.688 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.378999999999998 - type: map_at_10 value: 37.373 - type: map_at_100 value: 39.107 - type: map_at_1000 value: 39.317 - type: map_at_3 value: 34.563 - type: map_at_5 value: 36.173 - type: mrr_at_1 value: 35.178 - type: mrr_at_10 value: 42.44 - type: mrr_at_100 value: 43.434 - type: mrr_at_1000 value: 43.482 - type: mrr_at_3 value: 39.987 - type: mrr_at_5 value: 41.370000000000005 - type: ndcg_at_1 value: 35.178 - type: ndcg_at_10 value: 42.82 - type: ndcg_at_100 value: 48.935 - type: ndcg_at_1000 value: 51.28 - type: ndcg_at_3 value: 38.562999999999995 - type: ndcg_at_5 value: 40.687 - type: precision_at_1 value: 35.178 - type: precision_at_10 value: 7.945 - type: precision_at_100 value: 1.524 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 17.721 - type: precision_at_5 value: 12.925 - type: recall_at_1 value: 29.378999999999998 - type: recall_at_10 value: 52.141999999999996 - type: recall_at_100 value: 79.49000000000001 - type: recall_at_1000 value: 93.782 - type: recall_at_3 value: 39.579 - type: recall_at_5 value: 45.462 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 19.814999999999998 - type: map_at_10 value: 27.383999999999997 - type: map_at_100 value: 28.483999999999998 - type: map_at_1000 value: 28.585 - type: map_at_3 value: 24.807000000000002 - type: map_at_5 value: 26.485999999999997 - type: mrr_at_1 value: 21.996 - type: mrr_at_10 value: 29.584 - type: mrr_at_100 value: 30.611 - type: mrr_at_1000 value: 30.684 - type: mrr_at_3 value: 27.11 - type: mrr_at_5 value: 28.746 - type: ndcg_at_1 value: 21.996 - type: ndcg_at_10 value: 32.024 - type: ndcg_at_100 value: 37.528 - type: ndcg_at_1000 value: 40.150999999999996 - type: ndcg_at_3 value: 27.016000000000002 - type: ndcg_at_5 value: 29.927999999999997 - type: precision_at_1 value: 21.996 - type: precision_at_10 value: 5.102 - type: precision_at_100 value: 0.856 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 11.583 - type: precision_at_5 value: 8.577 - type: recall_at_1 value: 19.814999999999998 - type: recall_at_10 value: 44.239 - type: recall_at_100 value: 69.269 - type: recall_at_1000 value: 89.216 - type: recall_at_3 value: 31.102999999999998 - type: recall_at_5 value: 38.078 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 11.349 - type: map_at_10 value: 19.436 - type: map_at_100 value: 21.282999999999998 - type: map_at_1000 value: 21.479 - type: map_at_3 value: 15.841 - type: map_at_5 value: 17.558 - type: mrr_at_1 value: 25.863000000000003 - type: mrr_at_10 value: 37.218 - type: mrr_at_100 value: 38.198 - type: mrr_at_1000 value: 38.236 - type: mrr_at_3 value: 33.409 - type: mrr_at_5 value: 35.602000000000004 - type: ndcg_at_1 value: 25.863000000000003 - type: ndcg_at_10 value: 27.953 - type: ndcg_at_100 value: 35.327 - type: ndcg_at_1000 value: 38.708999999999996 - type: ndcg_at_3 value: 21.985 - type: ndcg_at_5 value: 23.957 - type: precision_at_1 value: 25.863000000000003 - type: precision_at_10 value: 8.99 - type: precision_at_100 value: 1.6889999999999998 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 16.308 - type: precision_at_5 value: 12.912 - type: recall_at_1 value: 11.349 - type: recall_at_10 value: 34.581 - type: recall_at_100 value: 60.178 - type: recall_at_1000 value: 78.88199999999999 - type: recall_at_3 value: 20.041999999999998 - type: recall_at_5 value: 25.458 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 7.893 - type: map_at_10 value: 15.457 - type: map_at_100 value: 20.905 - type: map_at_1000 value: 22.116 - type: map_at_3 value: 11.593 - type: map_at_5 value: 13.134 - type: mrr_at_1 value: 57.49999999999999 - type: mrr_at_10 value: 65.467 - type: mrr_at_100 value: 66.022 - type: mrr_at_1000 value: 66.039 - type: mrr_at_3 value: 63.458000000000006 - type: mrr_at_5 value: 64.546 - type: ndcg_at_1 value: 45.875 - type: ndcg_at_10 value: 33.344 - type: ndcg_at_100 value: 36.849 - type: ndcg_at_1000 value: 44.03 - type: ndcg_at_3 value: 37.504 - type: ndcg_at_5 value: 34.892 - type: precision_at_1 value: 57.49999999999999 - type: precision_at_10 value: 25.95 - type: precision_at_100 value: 7.89 - type: precision_at_1000 value: 1.669 - type: precision_at_3 value: 40.333000000000006 - type: precision_at_5 value: 33.050000000000004 - type: recall_at_1 value: 7.893 - type: recall_at_10 value: 20.724999999999998 - type: recall_at_100 value: 42.516 - type: recall_at_1000 value: 65.822 - type: recall_at_3 value: 12.615000000000002 - type: recall_at_5 value: 15.482000000000001 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 51.760000000000005 - type: f1 value: 45.51690565701713 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 53.882 - type: map_at_10 value: 65.902 - type: map_at_100 value: 66.33 - type: map_at_1000 value: 66.348 - type: map_at_3 value: 63.75999999999999 - type: map_at_5 value: 65.181 - type: mrr_at_1 value: 58.041 - type: mrr_at_10 value: 70.133 - type: mrr_at_100 value: 70.463 - type: mrr_at_1000 value: 70.47 - type: mrr_at_3 value: 68.164 - type: mrr_at_5 value: 69.465 - type: ndcg_at_1 value: 58.041 - type: ndcg_at_10 value: 71.84700000000001 - type: ndcg_at_100 value: 73.699 - type: ndcg_at_1000 value: 74.06700000000001 - type: ndcg_at_3 value: 67.855 - type: ndcg_at_5 value: 70.203 - type: precision_at_1 value: 58.041 - type: precision_at_10 value: 9.427000000000001 - type: precision_at_100 value: 1.049 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 27.278000000000002 - type: precision_at_5 value: 17.693 - type: recall_at_1 value: 53.882 - type: recall_at_10 value: 85.99 - type: recall_at_100 value: 94.09100000000001 - type: recall_at_1000 value: 96.612 - type: recall_at_3 value: 75.25 - type: recall_at_5 value: 80.997 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 19.165 - type: map_at_10 value: 31.845000000000002 - type: map_at_100 value: 33.678999999999995 - type: map_at_1000 value: 33.878 - type: map_at_3 value: 27.881 - type: map_at_5 value: 30.049999999999997 - type: mrr_at_1 value: 38.272 - type: mrr_at_10 value: 47.04 - type: mrr_at_100 value: 47.923 - type: mrr_at_1000 value: 47.973 - type: mrr_at_3 value: 44.985 - type: mrr_at_5 value: 46.150000000000006 - type: ndcg_at_1 value: 38.272 - type: ndcg_at_10 value: 39.177 - type: ndcg_at_100 value: 45.995000000000005 - type: ndcg_at_1000 value: 49.312 - type: ndcg_at_3 value: 36.135 - type: ndcg_at_5 value: 36.936 - type: precision_at_1 value: 38.272 - type: precision_at_10 value: 10.926 - type: precision_at_100 value: 1.809 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 24.331 - type: precision_at_5 value: 17.747 - type: recall_at_1 value: 19.165 - type: recall_at_10 value: 45.103 - type: recall_at_100 value: 70.295 - type: recall_at_1000 value: 90.592 - type: recall_at_3 value: 32.832 - type: recall_at_5 value: 37.905 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 32.397 - type: map_at_10 value: 44.83 - type: map_at_100 value: 45.716 - type: map_at_1000 value: 45.797 - type: map_at_3 value: 41.955999999999996 - type: map_at_5 value: 43.736999999999995 - type: mrr_at_1 value: 64.794 - type: mrr_at_10 value: 71.866 - type: mrr_at_100 value: 72.22 - type: mrr_at_1000 value: 72.238 - type: mrr_at_3 value: 70.416 - type: mrr_at_5 value: 71.304 - type: ndcg_at_1 value: 64.794 - type: ndcg_at_10 value: 54.186 - type: ndcg_at_100 value: 57.623000000000005 - type: ndcg_at_1000 value: 59.302 - type: ndcg_at_3 value: 49.703 - type: ndcg_at_5 value: 52.154999999999994 - type: precision_at_1 value: 64.794 - type: precision_at_10 value: 11.219 - type: precision_at_100 value: 1.394 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 30.767 - type: precision_at_5 value: 20.397000000000002 - type: recall_at_1 value: 32.397 - type: recall_at_10 value: 56.096999999999994 - type: recall_at_100 value: 69.696 - type: recall_at_1000 value: 80.88499999999999 - type: recall_at_3 value: 46.150999999999996 - type: recall_at_5 value: 50.993 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 81.1744 - type: ap value: 75.44973697032414 - type: f1 value: 81.09901117955782 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 19.519000000000002 - type: map_at_10 value: 31.025000000000002 - type: map_at_100 value: 32.275999999999996 - type: map_at_1000 value: 32.329 - type: map_at_3 value: 27.132 - type: map_at_5 value: 29.415999999999997 - type: mrr_at_1 value: 20.115 - type: mrr_at_10 value: 31.569000000000003 - type: mrr_at_100 value: 32.768 - type: mrr_at_1000 value: 32.816 - type: mrr_at_3 value: 27.748 - type: mrr_at_5 value: 29.956 - type: ndcg_at_1 value: 20.115 - type: ndcg_at_10 value: 37.756 - type: ndcg_at_100 value: 43.858000000000004 - type: ndcg_at_1000 value: 45.199 - type: ndcg_at_3 value: 29.818 - type: ndcg_at_5 value: 33.875 - type: precision_at_1 value: 20.115 - type: precision_at_10 value: 6.122 - type: precision_at_100 value: 0.919 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 12.794 - type: precision_at_5 value: 9.731 - type: recall_at_1 value: 19.519000000000002 - type: recall_at_10 value: 58.62500000000001 - type: recall_at_100 value: 86.99 - type: recall_at_1000 value: 97.268 - type: recall_at_3 value: 37.002 - type: recall_at_5 value: 46.778 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.71865025079799 - type: f1 value: 93.38906173610519 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 70.2576379388965 - type: f1 value: 49.20405830249464 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.48486886348351 - type: f1 value: 64.92199176095157 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.59246805648958 - type: f1 value: 72.1222026389164 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.887642595096825 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.3764418784054 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.81544126336991 - type: mrr value: 32.82666576268031 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.185 - type: map_at_10 value: 11.158 - type: map_at_100 value: 14.041 - type: map_at_1000 value: 15.360999999999999 - type: map_at_3 value: 8.417 - type: map_at_5 value: 9.378 - type: mrr_at_1 value: 44.582 - type: mrr_at_10 value: 53.083999999999996 - type: mrr_at_100 value: 53.787 - type: mrr_at_1000 value: 53.824000000000005 - type: mrr_at_3 value: 51.187000000000005 - type: mrr_at_5 value: 52.379 - type: ndcg_at_1 value: 42.57 - type: ndcg_at_10 value: 31.593 - type: ndcg_at_100 value: 29.093999999999998 - type: ndcg_at_1000 value: 37.909 - type: ndcg_at_3 value: 37.083 - type: ndcg_at_5 value: 34.397 - type: precision_at_1 value: 43.963 - type: precision_at_10 value: 23.498 - type: precision_at_100 value: 7.6160000000000005 - type: precision_at_1000 value: 2.032 - type: precision_at_3 value: 34.572 - type: precision_at_5 value: 29.412 - type: recall_at_1 value: 5.185 - type: recall_at_10 value: 15.234 - type: recall_at_100 value: 29.49 - type: recall_at_1000 value: 62.273999999999994 - type: recall_at_3 value: 9.55 - type: recall_at_5 value: 11.103 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 23.803 - type: map_at_10 value: 38.183 - type: map_at_100 value: 39.421 - type: map_at_1000 value: 39.464 - type: map_at_3 value: 33.835 - type: map_at_5 value: 36.327 - type: mrr_at_1 value: 26.68 - type: mrr_at_10 value: 40.439 - type: mrr_at_100 value: 41.415 - type: mrr_at_1000 value: 41.443999999999996 - type: mrr_at_3 value: 36.612 - type: mrr_at_5 value: 38.877 - type: ndcg_at_1 value: 26.68 - type: ndcg_at_10 value: 45.882 - type: ndcg_at_100 value: 51.227999999999994 - type: ndcg_at_1000 value: 52.207 - type: ndcg_at_3 value: 37.511 - type: ndcg_at_5 value: 41.749 - type: precision_at_1 value: 26.68 - type: precision_at_10 value: 7.9750000000000005 - type: precision_at_100 value: 1.0959999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 17.449 - type: precision_at_5 value: 12.897 - type: recall_at_1 value: 23.803 - type: recall_at_10 value: 67.152 - type: recall_at_100 value: 90.522 - type: recall_at_1000 value: 97.743 - type: recall_at_3 value: 45.338 - type: recall_at_5 value: 55.106 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.473 - type: map_at_10 value: 84.452 - type: map_at_100 value: 85.101 - type: map_at_1000 value: 85.115 - type: map_at_3 value: 81.435 - type: map_at_5 value: 83.338 - type: mrr_at_1 value: 81.19 - type: mrr_at_10 value: 87.324 - type: mrr_at_100 value: 87.434 - type: mrr_at_1000 value: 87.435 - type: mrr_at_3 value: 86.31 - type: mrr_at_5 value: 87.002 - type: ndcg_at_1 value: 81.21000000000001 - type: ndcg_at_10 value: 88.19 - type: ndcg_at_100 value: 89.44 - type: ndcg_at_1000 value: 89.526 - type: ndcg_at_3 value: 85.237 - type: ndcg_at_5 value: 86.892 - type: precision_at_1 value: 81.21000000000001 - type: precision_at_10 value: 13.417000000000002 - type: precision_at_100 value: 1.537 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.31 - type: precision_at_5 value: 24.59 - type: recall_at_1 value: 70.473 - type: recall_at_10 value: 95.367 - type: recall_at_100 value: 99.616 - type: recall_at_1000 value: 99.996 - type: recall_at_3 value: 86.936 - type: recall_at_5 value: 91.557 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 59.25776525253911 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 63.22135271663078 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.003 - type: map_at_10 value: 10.062999999999999 - type: map_at_100 value: 11.854000000000001 - type: map_at_1000 value: 12.145999999999999 - type: map_at_3 value: 7.242 - type: map_at_5 value: 8.652999999999999 - type: mrr_at_1 value: 19.7 - type: mrr_at_10 value: 29.721999999999998 - type: mrr_at_100 value: 30.867 - type: mrr_at_1000 value: 30.944 - type: mrr_at_3 value: 26.683 - type: mrr_at_5 value: 28.498 - type: ndcg_at_1 value: 19.7 - type: ndcg_at_10 value: 17.095 - type: ndcg_at_100 value: 24.375 - type: ndcg_at_1000 value: 29.831000000000003 - type: ndcg_at_3 value: 16.305 - type: ndcg_at_5 value: 14.291 - type: precision_at_1 value: 19.7 - type: precision_at_10 value: 8.799999999999999 - type: precision_at_100 value: 1.9349999999999998 - type: precision_at_1000 value: 0.32399999999999995 - type: precision_at_3 value: 15.2 - type: precision_at_5 value: 12.540000000000001 - type: recall_at_1 value: 4.003 - type: recall_at_10 value: 17.877000000000002 - type: recall_at_100 value: 39.217 - type: recall_at_1000 value: 65.862 - type: recall_at_3 value: 9.242 - type: recall_at_5 value: 12.715000000000002 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 80.25888668589654 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 77.02037527837669 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 86.58432681008449 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.31697756099051 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 88.18867599667057 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 84.87853941747623 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 89.46479925383916 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 66.45272113649146 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.43357313527851 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 78.82761687254882 - type: mrr value: 93.46223674655047 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 44.583 - type: map_at_10 value: 52.978 - type: map_at_100 value: 53.803 - type: map_at_1000 value: 53.839999999999996 - type: map_at_3 value: 50.03300000000001 - type: map_at_5 value: 51.939 - type: mrr_at_1 value: 47.0 - type: mrr_at_10 value: 54.730000000000004 - type: mrr_at_100 value: 55.31399999999999 - type: mrr_at_1000 value: 55.346 - type: mrr_at_3 value: 52.0 - type: mrr_at_5 value: 53.783 - type: ndcg_at_1 value: 47.0 - type: ndcg_at_10 value: 57.82899999999999 - type: ndcg_at_100 value: 61.49400000000001 - type: ndcg_at_1000 value: 62.676 - type: ndcg_at_3 value: 52.373000000000005 - type: ndcg_at_5 value: 55.481 - type: precision_at_1 value: 47.0 - type: precision_at_10 value: 7.867 - type: precision_at_100 value: 0.997 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 20.556 - type: precision_at_5 value: 14.066999999999998 - type: recall_at_1 value: 44.583 - type: recall_at_10 value: 71.172 - type: recall_at_100 value: 87.7 - type: recall_at_1000 value: 97.333 - type: recall_at_3 value: 56.511 - type: recall_at_5 value: 64.206 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.66237623762376 - type: cos_sim_ap value: 90.35465126226322 - type: cos_sim_f1 value: 82.44575936883628 - type: cos_sim_precision value: 81.32295719844358 - type: cos_sim_recall value: 83.6 - type: dot_accuracy value: 99.66237623762376 - type: dot_ap value: 90.35464287920453 - type: dot_f1 value: 82.44575936883628 - type: dot_precision value: 81.32295719844358 - type: dot_recall value: 83.6 - type: euclidean_accuracy value: 99.66237623762376 - type: euclidean_ap value: 90.3546512622632 - type: euclidean_f1 value: 82.44575936883628 - type: euclidean_precision value: 81.32295719844358 - type: euclidean_recall value: 83.6 - type: manhattan_accuracy value: 99.65940594059406 - type: manhattan_ap value: 90.29220174849843 - type: manhattan_f1 value: 82.4987605354487 - type: manhattan_precision value: 81.80924287118977 - type: manhattan_recall value: 83.2 - type: max_accuracy value: 99.66237623762376 - type: max_ap value: 90.35465126226322 - type: max_f1 value: 82.4987605354487 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.0394225901397 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.27954189859326 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.99055979974896 - type: mrr value: 51.82745257193787 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.21655465344237 - type: cos_sim_spearman value: 29.853205339630172 - type: dot_pearson value: 30.216540628083564 - type: dot_spearman value: 29.868978894753027 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.2 - type: map_at_10 value: 1.398 - type: map_at_100 value: 7.406 - type: map_at_1000 value: 18.401 - type: map_at_3 value: 0.479 - type: map_at_5 value: 0.772 - type: mrr_at_1 value: 70.0 - type: mrr_at_10 value: 79.25999999999999 - type: mrr_at_100 value: 79.25999999999999 - type: mrr_at_1000 value: 79.25999999999999 - type: mrr_at_3 value: 77.333 - type: mrr_at_5 value: 78.133 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_10 value: 58.548 - type: ndcg_at_100 value: 45.216 - type: ndcg_at_1000 value: 41.149 - type: ndcg_at_3 value: 60.641999999999996 - type: ndcg_at_5 value: 61.135 - type: precision_at_1 value: 70.0 - type: precision_at_10 value: 64.0 - type: precision_at_100 value: 46.92 - type: precision_at_1000 value: 18.642 - type: precision_at_3 value: 64.667 - type: precision_at_5 value: 66.4 - type: recall_at_1 value: 0.2 - type: recall_at_10 value: 1.6729999999999998 - type: recall_at_100 value: 10.856 - type: recall_at_1000 value: 38.964999999999996 - type: recall_at_3 value: 0.504 - type: recall_at_5 value: 0.852 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.6629999999999998 - type: map_at_10 value: 8.601 - type: map_at_100 value: 14.354 - type: map_at_1000 value: 15.927 - type: map_at_3 value: 4.1930000000000005 - type: map_at_5 value: 5.655 - type: mrr_at_1 value: 18.367 - type: mrr_at_10 value: 34.466 - type: mrr_at_100 value: 35.235 - type: mrr_at_1000 value: 35.27 - type: mrr_at_3 value: 28.571 - type: mrr_at_5 value: 31.531 - type: ndcg_at_1 value: 14.285999999999998 - type: ndcg_at_10 value: 20.374 - type: ndcg_at_100 value: 33.532000000000004 - type: ndcg_at_1000 value: 45.561 - type: ndcg_at_3 value: 18.442 - type: ndcg_at_5 value: 18.076 - type: precision_at_1 value: 18.367 - type: precision_at_10 value: 20.204 - type: precision_at_100 value: 7.489999999999999 - type: precision_at_1000 value: 1.5630000000000002 - type: precision_at_3 value: 21.769 - type: precision_at_5 value: 20.408 - type: recall_at_1 value: 1.6629999999999998 - type: recall_at_10 value: 15.549 - type: recall_at_100 value: 47.497 - type: recall_at_1000 value: 84.524 - type: recall_at_3 value: 5.289 - type: recall_at_5 value: 8.035 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 71.8194 - type: ap value: 14.447702451658554 - type: f1 value: 55.13659412856185 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 63.310696095076416 - type: f1 value: 63.360434851097814 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 51.30677907335145 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.12386004649221 - type: cos_sim_ap value: 73.99096426215495 - type: cos_sim_f1 value: 68.18416968442834 - type: cos_sim_precision value: 66.86960933536275 - type: cos_sim_recall value: 69.55145118733509 - type: dot_accuracy value: 86.12386004649221 - type: dot_ap value: 73.99096813038672 - type: dot_f1 value: 68.18416968442834 - type: dot_precision value: 66.86960933536275 - type: dot_recall value: 69.55145118733509 - type: euclidean_accuracy value: 86.12386004649221 - type: euclidean_ap value: 73.99095984980165 - type: euclidean_f1 value: 68.18416968442834 - type: euclidean_precision value: 66.86960933536275 - type: euclidean_recall value: 69.55145118733509 - type: manhattan_accuracy value: 86.09405734040651 - type: manhattan_ap value: 73.96825745608601 - type: manhattan_f1 value: 68.13888179729383 - type: manhattan_precision value: 65.99901088031652 - type: manhattan_recall value: 70.42216358839049 - type: max_accuracy value: 86.12386004649221 - type: max_ap value: 73.99096813038672 - type: max_f1 value: 68.18416968442834 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.99367407924865 - type: cos_sim_ap value: 86.19720829843081 - type: cos_sim_f1 value: 78.39889075384951 - type: cos_sim_precision value: 74.5110278818144 - type: cos_sim_recall value: 82.71481367416075 - type: dot_accuracy value: 88.99367407924865 - type: dot_ap value: 86.19718471454047 - type: dot_f1 value: 78.39889075384951 - type: dot_precision value: 74.5110278818144 - type: dot_recall value: 82.71481367416075 - type: euclidean_accuracy value: 88.99367407924865 - type: euclidean_ap value: 86.1972021422436 - type: euclidean_f1 value: 78.39889075384951 - type: euclidean_precision value: 74.5110278818144 - type: euclidean_recall value: 82.71481367416075 - type: manhattan_accuracy value: 88.95680521597392 - type: manhattan_ap value: 86.16659921351506 - type: manhattan_f1 value: 78.39125971550081 - type: manhattan_precision value: 74.82502799552073 - type: manhattan_recall value: 82.31444410224823 - type: max_accuracy value: 88.99367407924865 - type: max_ap value: 86.19720829843081 - type: max_f1 value: 78.39889075384951 --- # hkunlp/instructor-base We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-base) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-base) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start