--- library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("syubraj/sentence_similarity_nepali_v2") # Run inference sentences = [ 'रातो, डबल डेकर बस।', 'रातो डबल डेकर बस।', 'दुई कालो कुकुर हिउँमा हिंड्दै।', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `stsb-dev-nepali` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.6971 | | spearman_cosine | 0.6623 | | pearson_manhattan | 0.6332 | | spearman_manhattan | 0.6079 | | pearson_euclidean | 0.634 | | spearman_euclidean | 0.609 | | pearson_dot | 0.4848 | | spearman_dot | 0.5306 | | pearson_max | 0.6971 | | **spearman_max** | **0.6623** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 4,599 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-------------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------| | एक व्यक्ति प्याज काट्दै छ। | एउटा बिरालो शौचालयमा पपिङ गर्दैछ। | 0.0 | | क्यानडाको तेल रेल विस्फोटमा थप मृत्यु हुने अपेक्षा गरिएको छ | क्यानडामा रेल दुर्घटनामा पाँच जनाको मृत्यु भएको छ | 0.5599999904632569 | | एउटी महिला झिंगा माझ्दै छिन्। | एउटी महिला केही झिंगा माझ्दै। | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 100 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 100 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | stsb-dev-nepali_spearman_max | |:-------:|:-----:|:-------------:|:----------------------------:| | 1.0 | 288 | - | 0.5355 | | 1.7361 | 500 | 0.0723 | - | | 2.0 | 576 | - | 0.5794 | | 3.0 | 864 | - | 0.6108 | | 3.4722 | 1000 | 0.047 | 0.6147 | | 4.0 | 1152 | - | 0.6259 | | 5.0 | 1440 | - | 0.6356 | | 5.2083 | 1500 | 0.034 | - | | 6.0 | 1728 | - | 0.6329 | | 6.9444 | 2000 | 0.0217 | 0.6375 | | 7.0 | 2016 | - | 0.6382 | | 8.0 | 2304 | - | 0.6468 | | 8.6806 | 2500 | 0.0137 | - | | 9.0 | 2592 | - | 0.6348 | | 10.0 | 2880 | - | 0.6332 | | 10.4167 | 3000 | 0.0102 | 0.6427 | | 11.0 | 3168 | - | 0.6370 | | 12.0 | 3456 | - | 0.6515 | | 12.1528 | 3500 | 0.0084 | - | | 13.0 | 3744 | - | 0.6546 | | 13.8889 | 4000 | 0.0069 | 0.6400 | | 14.0 | 4032 | - | 0.6610 | | 15.0 | 4320 | - | 0.6495 | | 15.625 | 4500 | 0.006 | - | | 16.0 | 4608 | - | 0.6574 | | 17.0 | 4896 | - | 0.6486 | | 17.3611 | 5000 | 0.0053 | 0.6589 | | 18.0 | 5184 | - | 0.6592 | | 19.0 | 5472 | - | 0.6488 | | 19.0972 | 5500 | 0.0047 | - | | 20.0 | 5760 | - | 0.6436 | | 20.8333 | 6000 | 0.0044 | 0.6576 | | 21.0 | 6048 | - | 0.6515 | | 22.0 | 6336 | - | 0.6541 | | 22.5694 | 6500 | 0.0041 | - | | 23.0 | 6624 | - | 0.6549 | | 24.0 | 6912 | - | 0.6571 | | 24.3056 | 7000 | 0.0037 | 0.6603 | | 25.0 | 7200 | - | 0.6699 | | 26.0 | 7488 | - | 0.6653 | | 26.0417 | 7500 | 0.0037 | - | | 27.0 | 7776 | - | 0.6609 | | 27.7778 | 8000 | 0.0033 | 0.6578 | | 28.0 | 8064 | - | 0.6606 | | 29.0 | 8352 | - | 0.6614 | | 29.5139 | 8500 | 0.0031 | - | | 30.0 | 8640 | - | 0.6579 | | 31.0 | 8928 | - | 0.6688 | | 31.25 | 9000 | 0.0028 | 0.6650 | | 32.0 | 9216 | - | 0.6639 | | 32.9861 | 9500 | 0.0027 | - | | 33.0 | 9504 | - | 0.6624 | | 34.0 | 9792 | - | 0.6646 | | 34.7222 | 10000 | 0.0025 | 0.6530 | | 35.0 | 10080 | - | 0.6587 | | 36.0 | 10368 | - | 0.6671 | | 36.4583 | 10500 | 0.0025 | - | | 37.0 | 10656 | - | 0.6614 | | 38.0 | 10944 | - | 0.6602 | | 38.1944 | 11000 | 0.0024 | 0.6576 | | 39.0 | 11232 | - | 0.6665 | | 39.9306 | 11500 | 0.0023 | - | | 40.0 | 11520 | - | 0.6663 | | 41.0 | 11808 | - | 0.6734 | | 41.6667 | 12000 | 0.0021 | 0.6633 | | 42.0 | 12096 | - | 0.6667 | | 43.0 | 12384 | - | 0.6679 | | 43.4028 | 12500 | 0.002 | - | | 44.0 | 12672 | - | 0.6701 | | 45.0 | 12960 | - | 0.6650 | | 45.1389 | 13000 | 0.0019 | 0.6680 | | 46.0 | 13248 | - | 0.6631 | | 46.875 | 13500 | 0.0018 | - | | 47.0 | 13536 | - | 0.6643 | | 48.0 | 13824 | - | 0.6631 | | 48.6111 | 14000 | 0.0017 | 0.6648 | | 49.0 | 14112 | - | 0.6648 | | 50.0 | 14400 | - | 0.6619 | | 50.3472 | 14500 | 0.0017 | - | | 51.0 | 14688 | - | 0.6633 | | 52.0 | 14976 | - | 0.6622 | | 52.0833 | 15000 | 0.0016 | 0.6612 | | 53.0 | 15264 | - | 0.6670 | | 53.8194 | 15500 | 0.0015 | - | | 54.0 | 15552 | - | 0.6618 | | 55.0 | 15840 | - | 0.6641 | | 55.5556 | 16000 | 0.0015 | 0.6617 | | 56.0 | 16128 | - | 0.6669 | | 57.0 | 16416 | - | 0.6645 | | 57.2917 | 16500 | 0.0014 | - | | 58.0 | 16704 | - | 0.6642 | | 59.0 | 16992 | - | 0.6579 | | 59.0278 | 17000 | 0.0013 | 0.6592 | | 60.0 | 17280 | - | 0.6589 | | 60.7639 | 17500 | 0.0014 | - | | 61.0 | 17568 | - | 0.6685 | | 62.0 | 17856 | - | 0.6673 | | 62.5 | 18000 | 0.0012 | 0.6669 | | 63.0 | 18144 | - | 0.6665 | | 64.0 | 18432 | - | 0.6626 | | 64.2361 | 18500 | 0.0012 | - | | 65.0 | 18720 | - | 0.6619 | | 65.9722 | 19000 | 0.0012 | 0.6643 | | 66.0 | 19008 | - | 0.6651 | | 67.0 | 19296 | - | 0.6628 | | 67.7083 | 19500 | 0.0011 | - | | 68.0 | 19584 | - | 0.6658 | | 69.0 | 19872 | - | 0.6615 | | 69.4444 | 20000 | 0.0011 | 0.6627 | | 70.0 | 20160 | - | 0.6657 | | 71.0 | 20448 | - | 0.6663 | | 71.1806 | 20500 | 0.0011 | - | | 72.0 | 20736 | - | 0.6634 | | 72.9167 | 21000 | 0.001 | 0.6649 | | 73.0 | 21024 | - | 0.6632 | | 74.0 | 21312 | - | 0.6658 | | 74.6528 | 21500 | 0.001 | - | | 75.0 | 21600 | - | 0.6639 | | 76.0 | 21888 | - | 0.6601 | | 76.3889 | 22000 | 0.001 | 0.6623 | | 77.0 | 22176 | - | 0.6607 | | 78.0 | 22464 | - | 0.6613 | | 78.125 | 22500 | 0.0009 | - | | 79.0 | 22752 | - | 0.6613 | | 79.8611 | 23000 | 0.0009 | 0.6615 | | 80.0 | 23040 | - | 0.6615 | | 81.0 | 23328 | - | 0.6617 | | 81.5972 | 23500 | 0.0008 | - | | 82.0 | 23616 | - | 0.6604 | | 83.0 | 23904 | - | 0.6605 | | 83.3333 | 24000 | 0.0008 | 0.6602 | | 84.0 | 24192 | - | 0.6628 | | 85.0 | 24480 | - | 0.6603 | | 85.0694 | 24500 | 0.0008 | - | | 86.0 | 24768 | - | 0.6602 | | 86.8056 | 25000 | 0.0008 | 0.6592 | | 87.0 | 25056 | - | 0.6611 | | 88.0 | 25344 | - | 0.6612 | | 88.5417 | 25500 | 0.0008 | - | | 89.0 | 25632 | - | 0.6607 | | 90.0 | 25920 | - | 0.6598 | | 90.2778 | 26000 | 0.0008 | 0.6607 | | 91.0 | 26208 | - | 0.6615 | | 92.0 | 26496 | - | 0.6615 | | 92.0139 | 26500 | 0.0007 | - | | 93.0 | 26784 | - | 0.6609 | | 93.75 | 27000 | 0.0007 | 0.6607 | | 94.0 | 27072 | - | 0.6612 | | 95.0 | 27360 | - | 0.6624 | | 95.4861 | 27500 | 0.0007 | - | | 96.0 | 27648 | - | 0.6627 | | 97.0 | 27936 | - | 0.6618 | | 97.2222 | 28000 | 0.0007 | 0.6619 | | 98.0 | 28224 | - | 0.6621 | | 98.9583 | 28500 | 0.0007 | - | | 99.0 | 28512 | - | 0.6623 | | 100.0 | 28800 | - | 0.6623 |
### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.1.2 - Accelerate: 0.30.1 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```