m-polignano-uniba
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -253,6 +253,127 @@ The 🌟**ANITA project**🌟 *(**A**dvanced **N**atural-based interaction for t
|
|
253 |
- **Context length**: 8K, 8192.
|
254 |
<hr>
|
255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
#### Unsloth
|
257 |
|
258 |
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="200px" align="center" />
|
|
|
253 |
- **Context length**: 8K, 8192.
|
254 |
<hr>
|
255 |
|
256 |
+
### Transformers
|
257 |
+
|
258 |
+
For direct use with `transformers`, you can easily get started with the following steps.
|
259 |
+
|
260 |
+
- Firstly, you need to install transformers via the command below with `pip`.
|
261 |
+
|
262 |
+
```bash
|
263 |
+
pip install -U transformers
|
264 |
+
```
|
265 |
+
|
266 |
+
- Right now, you can start using the model directly.
|
267 |
+
|
268 |
+
```python
|
269 |
+
import torch
|
270 |
+
from transformers import (
|
271 |
+
AutoModelForCausalLM,
|
272 |
+
AutoTokenizer,
|
273 |
+
)
|
274 |
+
|
275 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
|
276 |
+
model = AutoModelForCausalLM.from_pretrained(
|
277 |
+
base_model,
|
278 |
+
torch_dtype=torch.bfloat16,
|
279 |
+
device_map="auto",
|
280 |
+
)
|
281 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
282 |
+
|
283 |
+
messages = [
|
284 |
+
{"role": "system", "content": "Answer clearly and detailed."},
|
285 |
+
{"role": "user", "content": "Why is the sky blue ?"}
|
286 |
+
]
|
287 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
288 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
289 |
+
for k,v in inputs.items():
|
290 |
+
inputs[k] = v.cuda()
|
291 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7)
|
292 |
+
results = tokenizer.batch_decode(outputs)[0]
|
293 |
+
print(results)
|
294 |
+
```
|
295 |
+
|
296 |
+
- Additionally, you can also use a model with **4bit quantization** to reduce the required resources at least. You can start with the code below.
|
297 |
+
|
298 |
+
```python
|
299 |
+
import torch
|
300 |
+
from transformers import (
|
301 |
+
AutoModelForCausalLM,
|
302 |
+
AutoTokenizer,
|
303 |
+
BitsAndBytesConfig,
|
304 |
+
)
|
305 |
+
|
306 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
|
307 |
+
bnb_config = BitsAndBytesConfig(
|
308 |
+
load_in_4bit=True,
|
309 |
+
bnb_4bit_quant_type="nf4",
|
310 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
311 |
+
bnb_4bit_use_double_quant=False,
|
312 |
+
)
|
313 |
+
model = AutoModelForCausalLM.from_pretrained(
|
314 |
+
base_model,
|
315 |
+
quantization_config=bnb_config,
|
316 |
+
device_map="auto",
|
317 |
+
)
|
318 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
319 |
+
|
320 |
+
messages = [
|
321 |
+
{"role": "system", "content": "Answer clearly and detailed."},
|
322 |
+
{"role": "user", "content": "Why is the sky blue ?"}
|
323 |
+
]
|
324 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
325 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
326 |
+
for k,v in inputs.items():
|
327 |
+
inputs[k] = v.cuda()
|
328 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7)
|
329 |
+
results = tokenizer.batch_decode(outputs)[0]
|
330 |
+
print(results)
|
331 |
+
|
332 |
+
```
|
333 |
+
|
334 |
+
### Unsloth
|
335 |
+
|
336 |
+
For direct use with `unsloth`, you can easily get started with the following steps.
|
337 |
+
|
338 |
+
- Firstly, you need to install unsloth via the command below with `pip`.
|
339 |
+
```bash
|
340 |
+
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
341 |
+
pip install --no-deps xformers trl peft accelerate bitsandbytes
|
342 |
+
```
|
343 |
+
|
344 |
+
- Initialize and optimize the model before use.
|
345 |
+
```python
|
346 |
+
from unsloth import FastLanguageModel
|
347 |
+
import torch
|
348 |
+
|
349 |
+
base_model = "m-polignano-uniba/LLaMAntino-3-ANITA-8B-sft-ORPO"
|
350 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
351 |
+
model_name = base_model,
|
352 |
+
max_seq_length = 8192,
|
353 |
+
dtype = None,
|
354 |
+
load_in_4bit = True, # Change to `False` if you don't want to use 4bit quantization.
|
355 |
+
)
|
356 |
+
FastLanguageModel.for_inference(model)
|
357 |
+
```
|
358 |
+
|
359 |
+
- Right now, you can start using the model directly.
|
360 |
+
```python
|
361 |
+
messages = [
|
362 |
+
{"role": "system", "content": "Answer clearly and detailed."},
|
363 |
+
{"role": "user", "content": "Why is the sky blue ?"}
|
364 |
+
]
|
365 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
366 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
|
367 |
+
for k,v in inputs.items():
|
368 |
+
inputs[k] = v.cuda()
|
369 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, top_p=0.85, temperature=0.7)
|
370 |
+
results = tokenizer.batch_decode(outputs)[0]
|
371 |
+
print(results)
|
372 |
+
```
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
<hr>
|
377 |
#### Unsloth
|
378 |
|
379 |
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="200px" align="center" />
|