update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss:
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -51,41 +51,24 @@ More information needed
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
-
- learning_rate:
|
55 |
- train_batch_size: 4
|
56 |
-
- eval_batch_size:
|
57 |
- seed: 42
|
58 |
- gradient_accumulation_steps: 2
|
59 |
- total_train_batch_size: 8
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
-
| Training Loss | Epoch | Step |
|
68 |
-
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 0.6619 | 4.0 | 450 | 0.71 | 0.8979 |
|
73 |
-
| 0.4521 | 5.0 | 562 | 0.74 | 0.7662 |
|
74 |
-
| 0.421 | 6.0 | 675 | 0.78 | 0.6843 |
|
75 |
-
| 0.2964 | 7.0 | 787 | 0.79 | 0.6774 |
|
76 |
-
| 0.1895 | 8.0 | 900 | 0.82 | 0.6137 |
|
77 |
-
| 0.187 | 9.0 | 1012 | 0.82 | 0.6087 |
|
78 |
-
| 0.1317 | 9.96 | 1120 | 0.81 | 0.6173 |
|
79 |
-
| 0.1001 | 11.0 | 1232 | 0.81 | 0.6172 |
|
80 |
-
| 0.1812 | 12.0 | 1345 | 0.81 | 0.6172 |
|
81 |
-
| 0.2104 | 13.0 | 1457 | 0.81 | 0.6172 |
|
82 |
-
| 0.1317 | 14.0 | 1568 | 0.81 | 0.6172 |
|
83 |
-
| 0.1101 | 15.0 | 1681 | 0.81 | 0.6172 |
|
84 |
-
| 0.1625 | 16.0 | 1792 | 0.81 | 0.6172 |
|
85 |
-
| 0.1848 | 17.0 | 1905 | 0.81 | 0.6172 |
|
86 |
-
| 0.1169 | 18.0 | 2016 | 0.6172 | 0.81 |
|
87 |
-
| 0.0976 | 19.0 | 2129 | 0.6172 | 0.81 |
|
88 |
-
| 0.1375 | 19.99 | 2240 | 0.6172 | 0.81 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.76
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.0703
|
35 |
+
- Accuracy: 0.76
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
51 |
### Training hyperparameters
|
52 |
|
53 |
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
- train_batch_size: 4
|
56 |
+
- eval_batch_size: 8
|
57 |
- seed: 42
|
58 |
- gradient_accumulation_steps: 2
|
59 |
- total_train_batch_size: 8
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 3
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.9146 | 1.0 | 112 | 1.5803 | 0.7 |
|
70 |
+
| 1.2789 | 2.0 | 225 | 1.2035 | 0.67 |
|
71 |
+
| 1.1288 | 2.99 | 336 | 1.0703 | 0.76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|