susnato commited on
Commit
285bf66
·
1 Parent(s): 6d163a5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -28
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.81
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.6172
35
- - Accuracy: 0.81
36
 
37
  ## Model description
38
 
@@ -51,41 +51,24 @@ More information needed
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 0.05
55
  - train_batch_size: 4
56
- - eval_batch_size: 4
57
  - seed: 42
58
  - gradient_accumulation_steps: 2
59
  - total_train_batch_size: 8
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 20
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Accuracy | Validation Loss |
68
- |:-------------:|:-----:|:----:|:--------:|:---------------:|
69
- | 1.9814 | 1.0 | 112 | 0.53 | 1.8342 |
70
- | 1.3136 | 2.0 | 225 | 0.66 | 1.2448 |
71
- | 1.023 | 3.0 | 337 | 0.73 | 0.9055 |
72
- | 0.6619 | 4.0 | 450 | 0.71 | 0.8979 |
73
- | 0.4521 | 5.0 | 562 | 0.74 | 0.7662 |
74
- | 0.421 | 6.0 | 675 | 0.78 | 0.6843 |
75
- | 0.2964 | 7.0 | 787 | 0.79 | 0.6774 |
76
- | 0.1895 | 8.0 | 900 | 0.82 | 0.6137 |
77
- | 0.187 | 9.0 | 1012 | 0.82 | 0.6087 |
78
- | 0.1317 | 9.96 | 1120 | 0.81 | 0.6173 |
79
- | 0.1001 | 11.0 | 1232 | 0.81 | 0.6172 |
80
- | 0.1812 | 12.0 | 1345 | 0.81 | 0.6172 |
81
- | 0.2104 | 13.0 | 1457 | 0.81 | 0.6172 |
82
- | 0.1317 | 14.0 | 1568 | 0.81 | 0.6172 |
83
- | 0.1101 | 15.0 | 1681 | 0.81 | 0.6172 |
84
- | 0.1625 | 16.0 | 1792 | 0.81 | 0.6172 |
85
- | 0.1848 | 17.0 | 1905 | 0.81 | 0.6172 |
86
- | 0.1169 | 18.0 | 2016 | 0.6172 | 0.81 |
87
- | 0.0976 | 19.0 | 2129 | 0.6172 | 0.81 |
88
- | 0.1375 | 19.99 | 2240 | 0.6172 | 0.81 |
89
 
90
 
91
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.76
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 1.0703
35
+ - Accuracy: 0.76
36
 
37
  ## Model description
38
 
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
  - train_batch_size: 4
56
+ - eval_batch_size: 8
57
  - seed: 42
58
  - gradient_accumulation_steps: 2
59
  - total_train_batch_size: 8
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 3
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9146 | 1.0 | 112 | 1.5803 | 0.7 |
70
+ | 1.2789 | 2.0 | 225 | 1.2035 | 0.67 |
71
+ | 1.1288 | 2.99 | 336 | 1.0703 | 0.76 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions