dipteshkanojia commited on
Commit
3eb04cb
·
1 Parent(s): 8f364d3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -2
README.md CHANGED
@@ -2,9 +2,36 @@
2
  license: mit
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
 
 
5
  model-index:
6
  - name: roberta-large-finetuned-ner
7
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -12,7 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # roberta-large-finetuned-ner
14
 
15
- This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
 
 
 
 
 
 
16
 
17
  ## Model description
18
 
@@ -39,6 +72,18 @@ The following hyperparameters were used during training:
39
  - lr_scheduler_type: linear
40
  - num_epochs: 6
41
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ### Framework versions
43
 
44
  - Transformers 4.18.0
 
2
  license: mit
3
  tags:
4
  - generated_from_trainer
5
+ datasets:
6
+ - plo_dunfiltered_config
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
  model-index:
13
  - name: roberta-large-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: plo_dunfiltered_config
20
+ type: plo_dunfiltered_config
21
+ args: PLODunfiltered
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9662545190541101
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9627013733169376
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9644746737300262
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9607518572002093
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # roberta-large-finetuned-ner
41
 
42
+ This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the plo_dunfiltered_config dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.1393
45
+ - Precision: 0.9663
46
+ - Recall: 0.9627
47
+ - F1: 0.9645
48
+ - Accuracy: 0.9608
49
 
50
  ## Model description
51
 
 
72
  - lr_scheduler_type: linear
73
  - num_epochs: 6
74
 
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.1281 | 1.0 | 14233 | 0.1300 | 0.9557 | 0.9436 | 0.9496 | 0.9457 |
80
+ | 0.1056 | 2.0 | 28466 | 0.1076 | 0.9620 | 0.9552 | 0.9586 | 0.9545 |
81
+ | 0.0904 | 3.0 | 42699 | 0.1054 | 0.9655 | 0.9585 | 0.9620 | 0.9583 |
82
+ | 0.0743 | 4.0 | 56932 | 0.1145 | 0.9658 | 0.9602 | 0.9630 | 0.9593 |
83
+ | 0.0523 | 5.0 | 71165 | 0.1206 | 0.9664 | 0.9619 | 0.9641 | 0.9604 |
84
+ | 0.044 | 6.0 | 85398 | 0.1393 | 0.9663 | 0.9627 | 0.9645 | 0.9608 |
85
+
86
+
87
  ### Framework versions
88
 
89
  - Transformers 4.18.0