--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge base_model: t5-small model-index: - name: search_summarize_v1 results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - type: rouge value: 0.1476 name: Rouge1 --- # search_summarize_v1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5224 - Rouge1: 0.1476 - Rouge2: 0.0551 - Rougel: 0.1228 - Rougelsum: 0.1228 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8176 | 0.1281 | 0.0401 | 0.1087 | 0.1086 | 19.0 | | No log | 2.0 | 124 | 2.5989 | 0.1372 | 0.0476 | 0.1138 | 0.1137 | 19.0 | | No log | 3.0 | 186 | 2.5386 | 0.1464 | 0.0541 | 0.1218 | 0.1219 | 19.0 | | No log | 4.0 | 248 | 2.5224 | 0.1476 | 0.0551 | 0.1228 | 0.1228 | 19.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3