--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: custom-object-test6 results: [] --- # custom-object-test6 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sungile/custom-object-masking5 dataset. It achieves the following results on the evaluation set: - Loss: 0.3457 - Mean Iou: 0.3368 - Mean Accuracy: 0.6736 - Overall Accuracy: 0.6736 - Accuracy Unknown: nan - Accuracy Background: 0.6736 - Accuracy Object: nan - Iou Unknown: 0.0 - Iou Background: 0.6736 - Iou Object: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unknown | Accuracy Background | Accuracy Object | Iou Unknown | Iou Background | Iou Object | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------------:|:---------------:|:-----------:|:--------------:|:----------:| | 0.7667 | 0.25 | 20 | 1.0272 | 0.3026 | 0.9079 | 0.9079 | nan | 0.9079 | nan | 0.0 | 0.9079 | 0.0 | | 0.8127 | 0.5 | 40 | 0.8213 | 0.2803 | 0.8409 | 0.8409 | nan | 0.8409 | nan | 0.0 | 0.8409 | 0.0 | | 0.5588 | 0.75 | 60 | 0.7310 | 0.4304 | 0.8608 | 0.8608 | nan | 0.8608 | nan | 0.0 | 0.8608 | nan | | 0.6156 | 1.0 | 80 | 0.5317 | 0.3130 | 0.6261 | 0.6261 | nan | 0.6261 | nan | 0.0 | 0.6261 | nan | | 0.5077 | 1.25 | 100 | 0.4617 | 0.3482 | 0.6964 | 0.6964 | nan | 0.6964 | nan | 0.0 | 0.6964 | nan | | 0.5612 | 1.5 | 120 | 0.4336 | 0.3341 | 0.6683 | 0.6683 | nan | 0.6683 | nan | 0.0 | 0.6683 | nan | | 0.4468 | 1.75 | 140 | 0.3946 | 0.3442 | 0.6883 | 0.6883 | nan | 0.6883 | nan | 0.0 | 0.6883 | nan | | 0.292 | 2.0 | 160 | 0.3554 | 0.3041 | 0.6081 | 0.6081 | nan | 0.6081 | nan | 0.0 | 0.6081 | nan | | 0.3769 | 2.25 | 180 | 0.3798 | 0.3402 | 0.6805 | 0.6805 | nan | 0.6805 | nan | 0.0 | 0.6805 | nan | | 0.3386 | 2.5 | 200 | 0.3493 | 0.3147 | 0.6293 | 0.6293 | nan | 0.6293 | nan | 0.0 | 0.6293 | nan | | 0.2689 | 2.75 | 220 | 0.3736 | 0.3492 | 0.6984 | 0.6984 | nan | 0.6984 | nan | 0.0 | 0.6984 | nan | | 0.2539 | 3.0 | 240 | 0.3457 | 0.3368 | 0.6736 | 0.6736 | nan | 0.6736 | nan | 0.0 | 0.6736 | nan | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0