File size: 4,271 Bytes
326050d
 
7153d61
 
 
 
 
 
 
 
 
326050d
 
7153d61
 
326050d
7153d61
326050d
7153d61
 
 
 
 
 
 
 
 
 
 
 
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
326050d
7153d61
 
 
 
 
 
 
 
326050d
7153d61
326050d
7153d61
 
 
 
 
 
 
 
 
 
 
 
 
 
326050d
 
7153d61
326050d
7153d61
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: custom-object-test6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# custom-object-test6

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sungile/custom-object-masking5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3457
- Mean Iou: 0.3368
- Mean Accuracy: 0.6736
- Overall Accuracy: 0.6736
- Accuracy Unknown: nan
- Accuracy Background: 0.6736
- Accuracy Object: nan
- Iou Unknown: 0.0
- Iou Background: 0.6736
- Iou Object: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unknown | Accuracy Background | Accuracy Object | Iou Unknown | Iou Background | Iou Object |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------------:|:---------------:|:-----------:|:--------------:|:----------:|
| 0.7667        | 0.25  | 20   | 1.0272          | 0.3026   | 0.9079        | 0.9079           | nan              | 0.9079              | nan             | 0.0         | 0.9079         | 0.0        |
| 0.8127        | 0.5   | 40   | 0.8213          | 0.2803   | 0.8409        | 0.8409           | nan              | 0.8409              | nan             | 0.0         | 0.8409         | 0.0        |
| 0.5588        | 0.75  | 60   | 0.7310          | 0.4304   | 0.8608        | 0.8608           | nan              | 0.8608              | nan             | 0.0         | 0.8608         | nan        |
| 0.6156        | 1.0   | 80   | 0.5317          | 0.3130   | 0.6261        | 0.6261           | nan              | 0.6261              | nan             | 0.0         | 0.6261         | nan        |
| 0.5077        | 1.25  | 100  | 0.4617          | 0.3482   | 0.6964        | 0.6964           | nan              | 0.6964              | nan             | 0.0         | 0.6964         | nan        |
| 0.5612        | 1.5   | 120  | 0.4336          | 0.3341   | 0.6683        | 0.6683           | nan              | 0.6683              | nan             | 0.0         | 0.6683         | nan        |
| 0.4468        | 1.75  | 140  | 0.3946          | 0.3442   | 0.6883        | 0.6883           | nan              | 0.6883              | nan             | 0.0         | 0.6883         | nan        |
| 0.292         | 2.0   | 160  | 0.3554          | 0.3041   | 0.6081        | 0.6081           | nan              | 0.6081              | nan             | 0.0         | 0.6081         | nan        |
| 0.3769        | 2.25  | 180  | 0.3798          | 0.3402   | 0.6805        | 0.6805           | nan              | 0.6805              | nan             | 0.0         | 0.6805         | nan        |
| 0.3386        | 2.5   | 200  | 0.3493          | 0.3147   | 0.6293        | 0.6293           | nan              | 0.6293              | nan             | 0.0         | 0.6293         | nan        |
| 0.2689        | 2.75  | 220  | 0.3736          | 0.3492   | 0.6984        | 0.6984           | nan              | 0.6984              | nan             | 0.0         | 0.6984         | nan        |
| 0.2539        | 3.0   | 240  | 0.3457          | 0.3368   | 0.6736        | 0.6736           | nan              | 0.6736              | nan             | 0.0         | 0.6736         | nan        |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0