# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from types import MethodType from typing import TYPE_CHECKING, Optional from transformers import Trainer from ...extras.logging import get_logger from ..callbacks import PissaConvertCallback, SaveProcessorCallback from ..trainer_utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: import torch from transformers import ProcessorMixin from ...hparams import FinetuningArguments logger = get_logger(__name__) class CustomTrainer(Trainer): r""" Inherits Trainer for custom optimizer. """ def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: super().__init__(**kwargs) self.finetuning_args = finetuning_args if processor is not None: self.add_callback(SaveProcessorCallback(processor)) if finetuning_args.pissa_convert: self.add_callback(PissaConvertCallback) if finetuning_args.use_badam: from badam import BAdamCallback, clip_grad_norm_old_version self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator) self.add_callback(BAdamCallback) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer)