# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's Transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Tuple import torch import transformers.models from transformers.activations import ACT2FN from transformers.utils import logging from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments logger = get_logger(__name__) transformers_logger = logging.get_logger(__name__) class LlavaMultiModalProjectorForYiVL(torch.nn.Module): def __init__(self, config: "LlavaConfig") -> None: super().__init__() self.config = config if config is None: return self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] def forward(self, image_features: "torch.Tensor") -> "torch.Tensor": hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) if hidden_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.linear_1.weight.dtype transformers_logger.warning_once("The hidden states seems to be silently casted in float32.") hidden_states = hidden_states.to(target_dtype) return hidden_states class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL): def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None: super().__init__(config=None) self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.act = ACT2FN[projector_hidden_act] def autocast_projector_dtype( model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector" ) -> None: def _mm_projector_forward_post_hook( module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" ) -> "torch.Tensor": return output.to(model_args.compute_dtype) if hasattr(model, mm_projector_name) and getattr(model, "quantization_method", None): logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) mm_projector.register_forward_hook(_mm_projector_forward_post_hook) def configure_visual_model(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "llava": # required for ds zero3 and valuehead models setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) if getattr(config, "is_yi_vl_derived_model", None): logger.info("Detected Yi-VL model, applying projector patch.") transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL