# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Sequence import torch from transformers.integrations import is_deepspeed_zero3_enabled from transformers.utils.versions import require_version if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments def _set_z3_leaf_modules(model: "PreTrainedModel", leaf_modules: Sequence["torch.nn.Module"]) -> None: require_version("deepspeed>=0.13.0", "To fix: pip install deepspeed>=0.13.0") from deepspeed.utils import set_z3_leaf_modules # type: ignore set_z3_leaf_modules(model, leaf_modules) def add_z3_leaf_module(model: "PreTrainedModel") -> None: r""" Sets module as a leaf module to skip partitioning in deepspeed zero3. """ if not is_deepspeed_zero3_enabled(): return if getattr(model.config, "model_type", None) == "dbrx": from transformers.models.dbrx.modeling_dbrx import DbrxFFN _set_z3_leaf_modules(model, [DbrxFFN]) if getattr(model.config, "model_type", None) == "jamba": from transformers.models.jamba.modeling_jamba import JambaSparseMoeBlock _set_z3_leaf_modules(model, [JambaSparseMoeBlock]) if getattr(model.config, "model_type", None) == "jetmoe": from transformers.models.jetmoe.modeling_jetmoe import JetMoeMoA, JetMoeMoE _set_z3_leaf_modules(model, [JetMoeMoA, JetMoeMoE]) if getattr(model.config, "model_type", None) == "mixtral": from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock _set_z3_leaf_modules(model, [MixtralSparseMoeBlock]) if getattr(model.config, "model_type", None) == "qwen2moe": from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock _set_z3_leaf_modules(model, [Qwen2MoeSparseMoeBlock]) def configure_moe(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: if model_args.moe_aux_loss_coef is not None: if getattr(config, "model_type", None) in ["jamba", "mixtral", "qwen2_moe"]: setattr(config, "router_aux_loss_coef", model_args.moe_aux_loss_coef) elif getattr(config, "model_type", None) == "deepseek": setattr(config, "aux_loss_alpha", model_args.moe_aux_loss_coef) elif getattr(config, "model_type", None) == "jetmoe": setattr(config, "aux_loss_coef", model_args.moe_aux_loss_coef) if getattr(config, "model_type", None) in ["dbrx", "jamba", "jetmoe", "mixtral", "qwen2_moe"]: setattr(config, "output_router_logits", is_trainable)