# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from contextlib import nullcontext from typing import TYPE_CHECKING import torch from transformers.integrations import is_deepspeed_zero3_enabled from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import PreTrainedModel, PreTrainedTokenizer logger = get_logger(__name__) def _noisy_mean_initialization(embed_weight: "torch.Tensor", num_new_tokens: int) -> None: embedding_dim = embed_weight.size(1) avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True) noise_weight = torch.empty_like(embed_weight[-num_new_tokens:]) noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim))) embed_weight[-num_new_tokens:] = avg_weight + noise_weight def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None: r""" Resize token embeddings. """ if is_deepspeed_zero3_enabled(): import deepspeed # type: ignore params = [model.get_input_embeddings().weight] if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings: params.append(model.get_output_embeddings().weight) context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0) else: context_maybe_zero3 = nullcontext() with context_maybe_zero3: current_embedding_size = model.get_input_embeddings().weight.size(0) if len(tokenizer) > current_embedding_size: if getattr(model, "quantization_method", None): raise ValueError("Cannot resize embedding layers of a quantized model.") if not isinstance(model.get_output_embeddings(), torch.nn.Linear): raise ValueError("Current model does not support resizing embedding layers.") model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64) with context_maybe_zero3: new_embedding_size = model.get_input_embeddings().weight.size(0) num_new_tokens = new_embedding_size - current_embedding_size _noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens) _noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens) logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size))