# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.logging import get_logger from ..data_utils import Role from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def _encode_unsupervised_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Tuple[List[int], List[int]]: if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models prompt[0]["content"] = template.image_token + prompt[0]["content"] if len(response) == 1: messages = prompt + response else: messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools) if template.efficient_eos: labels += [tokenizer.eos_token_id] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids source_len, target_len = infer_seqlen(len(input_ids), len(labels), data_args.cutoff_len) input_ids = input_ids[:source_len] labels = labels[:target_len] return input_ids, labels def preprocess_unsupervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X` and labels with format `Y ` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue input_ids, labels = _encode_unsupervised_example( prompt=examples["prompt"][i], response=examples["response"][i], system=examples["system"][i], tools=examples["tools"][i], template=template, tokenizer=tokenizer, processor=processor, data_args=data_args, ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) return model_inputs def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))