# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack, infer_seqlen if TYPE_CHECKING: from transformers import PreTrainedTokenizer, ProcessorMixin from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def _encode_supervised_example( prompt: Sequence[Dict[str, str]], response: Sequence[Dict[str, str]], system: Optional[str], tools: Optional[str], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Tuple[List[int], List[int]]: if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models prompt[0]["content"] = template.image_token + prompt[0]["content"] messages = prompt + response input_ids, labels = [], [] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) input_ids += [image_token_id] * getattr(processor, "image_seq_length") labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length") encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools) total_length = 1 if template.efficient_eos else 0 for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs): if total_length >= data_args.cutoff_len: break source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), data_args.cutoff_len - total_length) source_ids = source_ids[:source_len] target_ids = target_ids[:target_len] total_length += source_len + target_len if data_args.train_on_prompt: source_mask = source_ids elif turn_idx != 0 and template.efficient_eos: source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1) else: source_mask = [IGNORE_INDEX] * source_len input_ids += source_ids + target_ids labels += source_mask + target_ids if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] return input_ids, labels def preprocess_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue input_ids, labels = _encode_supervised_example( prompt=examples["prompt"][i], response=examples["response"][i], system=examples["system"][i], tools=examples["tools"][i], template=template, tokenizer=tokenizer, processor=processor, data_args=data_args, ) model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) return model_inputs def preprocess_packed_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X1 Y1 X2 Y2 ` # and labels with format ` ... Y1 ... Y2 ` valid_num = 0 batch_input_ids, batch_labels = [], [] lengths = [] length2indexes = defaultdict(list) for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue input_ids, labels = _encode_supervised_example( prompt=examples["prompt"][i], response=examples["response"][i], system=examples["system"][i], tools=examples["tools"][i], template=template, tokenizer=tokenizer, processor=None, data_args=data_args, ) length = len(input_ids) if length > data_args.cutoff_len: logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len)) else: lengths.append(length) length2indexes[length].append(valid_num) batch_input_ids.append(input_ids) batch_labels.append(labels) valid_num += 1 model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} knapsacks = greedy_knapsack(lengths, data_args.cutoff_len) for knapsack in knapsacks: packed_input_ids, packed_attention_masks, packed_labels = [], [], [] for i, length in enumerate(knapsack): index = length2indexes[length].pop() packed_input_ids += batch_input_ids[index] packed_labels += batch_labels[index] if data_args.neat_packing: packed_attention_masks += [i + 1] * len(batch_input_ids[index]) # start from 1 else: packed_attention_masks += [1] * len(batch_input_ids[index]) if len(packed_input_ids) < data_args.cutoff_len: pad_length = data_args.cutoff_len - len(packed_input_ids) packed_input_ids += [tokenizer.pad_token_id] * pad_length packed_labels += [IGNORE_INDEX] * pad_length if data_args.neat_packing: packed_attention_masks += [0] * pad_length else: packed_attention_masks += [1] * pad_length # more efficient flash_attn if len(packed_input_ids) != data_args.cutoff_len: raise ValueError("The length of packed example should be identical to the cutoff length.") model_inputs["input_ids"].append(packed_input_ids) model_inputs["attention_mask"].append(packed_attention_masks) model_inputs["labels"].append(packed_labels) return model_inputs def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))