|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import torch |
|
|
|
from llamafactory.extras.misc import get_current_device |
|
from llamafactory.hparams import get_train_args |
|
from llamafactory.model import load_model, load_tokenizer |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "lora", |
|
"lora_target": "all", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 1024, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
|
|
def test_checkpointing_enable(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": False, **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): |
|
assert getattr(module, "gradient_checkpointing") is True |
|
|
|
|
|
def test_checkpointing_disable(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"disable_gradient_checkpointing": True, **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()): |
|
assert getattr(module, "gradient_checkpointing") is False |
|
|
|
|
|
def test_upcast_layernorm(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"upcast_layernorm": True, **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
for name, param in model.named_parameters(): |
|
if param.ndim == 1 and "norm" in name: |
|
assert param.dtype == torch.float32 |
|
|
|
|
|
def test_upcast_lmhead_output(): |
|
model_args, _, _, finetuning_args, _ = get_train_args({"upcast_lmhead_output": True, **TRAIN_ARGS}) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True) |
|
inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device()) |
|
outputs: "torch.Tensor" = model.get_output_embeddings()(inputs) |
|
assert outputs.dtype == torch.float32 |
|
|