sunatte's picture
Upload folder using huggingface_hub
2b915e2 verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import signal
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import psutil
from transformers.trainer_utils import get_last_checkpoint
from yaml import safe_dump, safe_load
from ..extras.constants import PEFT_METHODS, RUNNING_LOG, TRAINER_LOG, TRAINING_ARGS, TRAINING_STAGES
from ..extras.packages import is_gradio_available, is_matplotlib_available
from ..extras.ploting import gen_loss_plot
from ..model import QuantizationMethod
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, get_save_dir
from .locales import ALERTS
if is_gradio_available():
import gradio as gr
def abort_process(pid: int) -> None:
r"""
Aborts the processes recursively in a bottom-up way.
"""
try:
children = psutil.Process(pid).children()
if children:
for child in children:
abort_process(child.pid)
os.kill(pid, signal.SIGABRT)
except Exception:
pass
def can_quantize(finetuning_type: str) -> "gr.Dropdown":
r"""
Judges if the quantization is available in this finetuning type.
"""
if finetuning_type not in PEFT_METHODS:
return gr.Dropdown(value="none", interactive=False)
else:
return gr.Dropdown(interactive=True)
def can_quantize_to(quantization_method: str) -> "gr.Dropdown":
r"""
Returns the available quantization bits.
"""
if quantization_method == QuantizationMethod.BITS_AND_BYTES.value:
available_bits = ["none", "8", "4"]
elif quantization_method == QuantizationMethod.HQQ.value:
available_bits = ["none", "8", "6", "5", "4", "3", "2", "1"]
elif quantization_method == QuantizationMethod.EETQ.value:
available_bits = ["none", "8"]
return gr.Dropdown(choices=available_bits)
def change_stage(training_stage: str = list(TRAINING_STAGES.keys())[0]) -> Tuple[List[str], bool]:
r"""
Modifys states after changing the training stage.
"""
return [], TRAINING_STAGES[training_stage] == "pt"
def check_json_schema(text: str, lang: str) -> None:
r"""
Checks if the json schema is valid.
"""
try:
tools = json.loads(text)
if tools:
assert isinstance(tools, list)
for tool in tools:
if "name" not in tool:
raise NotImplementedError("Name not found.")
except NotImplementedError:
gr.Warning(ALERTS["err_tool_name"][lang])
except Exception:
gr.Warning(ALERTS["err_json_schema"][lang])
def clean_cmd(args: Dict[str, Any]) -> Dict[str, Any]:
r"""
Removes args with NoneType or False or empty string value.
"""
no_skip_keys = ["packing"]
return {k: v for k, v in args.items() if (k in no_skip_keys) or (v is not None and v is not False and v != "")}
def gen_cmd(args: Dict[str, Any]) -> str:
r"""
Generates arguments for previewing.
"""
cmd_lines = ["llamafactory-cli train "]
for k, v in clean_cmd(args).items():
cmd_lines.append(" --{} {} ".format(k, str(v)))
cmd_text = "\\\n".join(cmd_lines)
cmd_text = "```bash\n{}\n```".format(cmd_text)
return cmd_text
def save_cmd(args: Dict[str, Any]) -> str:
r"""
Saves arguments to launch training.
"""
output_dir = args["output_dir"]
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, TRAINING_ARGS), "w", encoding="utf-8") as f:
safe_dump(clean_cmd(args), f)
return os.path.join(output_dir, TRAINING_ARGS)
def get_eval_results(path: os.PathLike) -> str:
r"""
Gets scores after evaluation.
"""
with open(path, "r", encoding="utf-8") as f:
result = json.dumps(json.load(f), indent=4)
return "```json\n{}\n```\n".format(result)
def get_time() -> str:
r"""
Gets current date and time.
"""
return datetime.now().strftime(r"%Y-%m-%d-%H-%M-%S")
def get_trainer_info(output_path: os.PathLike, do_train: bool) -> Tuple[str, "gr.Slider", Optional["gr.Plot"]]:
r"""
Gets training infomation for monitor.
"""
running_log = ""
running_progress = gr.Slider(visible=False)
running_loss = None
running_log_path = os.path.join(output_path, RUNNING_LOG)
if os.path.isfile(running_log_path):
with open(running_log_path, "r", encoding="utf-8") as f:
running_log = f.read()
trainer_log_path = os.path.join(output_path, TRAINER_LOG)
if os.path.isfile(trainer_log_path):
trainer_log: List[Dict[str, Any]] = []
with open(trainer_log_path, "r", encoding="utf-8") as f:
for line in f:
trainer_log.append(json.loads(line))
if len(trainer_log) != 0:
latest_log = trainer_log[-1]
percentage = latest_log["percentage"]
label = "Running {:d}/{:d}: {} < {}".format(
latest_log["current_steps"],
latest_log["total_steps"],
latest_log["elapsed_time"],
latest_log["remaining_time"],
)
running_progress = gr.Slider(label=label, value=percentage, visible=True)
if do_train and is_matplotlib_available():
running_loss = gr.Plot(gen_loss_plot(trainer_log))
return running_log, running_progress, running_loss
def load_args(config_path: str) -> Optional[Dict[str, Any]]:
r"""
Loads saved arguments.
"""
try:
with open(config_path, "r", encoding="utf-8") as f:
return safe_load(f)
except Exception:
return None
def save_args(config_path: str, config_dict: Dict[str, Any]):
r"""
Saves arguments.
"""
with open(config_path, "w", encoding="utf-8") as f:
safe_dump(config_dict, f)
def list_config_paths(current_time: str) -> "gr.Dropdown":
r"""
Lists all the saved configuration files.
"""
config_files = ["{}.yaml".format(current_time)]
if os.path.isdir(DEFAULT_CONFIG_DIR):
for file_name in os.listdir(DEFAULT_CONFIG_DIR):
if file_name.endswith(".yaml") and file_name not in config_files:
config_files.append(file_name)
return gr.Dropdown(choices=config_files)
def list_output_dirs(model_name: Optional[str], finetuning_type: str, current_time: str) -> "gr.Dropdown":
r"""
Lists all the directories that can resume from.
"""
output_dirs = ["train_{}".format(current_time)]
if model_name:
save_dir = get_save_dir(model_name, finetuning_type)
if save_dir and os.path.isdir(save_dir):
for folder in os.listdir(save_dir):
output_dir = os.path.join(save_dir, folder)
if os.path.isdir(output_dir) and get_last_checkpoint(output_dir) is not None:
output_dirs.append(folder)
return gr.Dropdown(choices=output_dirs)
def create_ds_config() -> None:
r"""
Creates deepspeed config.
"""
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
ds_config = {
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": True,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1,
},
"bf16": {"enabled": "auto"},
}
offload_config = {
"device": "cpu",
"pin_memory": True,
}
ds_config["zero_optimization"] = {
"stage": 2,
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"contiguous_gradients": True,
"round_robin_gradients": True,
}
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z2_config.json"), "w", encoding="utf-8") as f:
json.dump(ds_config, f, indent=2)
ds_config["zero_optimization"]["offload_optimizer"] = offload_config
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z2_offload_config.json"), "w", encoding="utf-8") as f:
json.dump(ds_config, f, indent=2)
ds_config["zero_optimization"] = {
"stage": 3,
"overlap_comm": True,
"contiguous_gradients": True,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": True,
}
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z3_config.json"), "w", encoding="utf-8") as f:
json.dump(ds_config, f, indent=2)
ds_config["zero_optimization"]["offload_optimizer"] = offload_config
ds_config["zero_optimization"]["offload_param"] = offload_config
with open(os.path.join(DEFAULT_CACHE_DIR, "ds_z3_offload_config.json"), "w", encoding="utf-8") as f:
json.dump(ds_config, f, indent=2)