|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from copy import deepcopy |
|
from subprocess import Popen, TimeoutExpired |
|
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional |
|
|
|
from transformers.trainer import TRAINING_ARGS_NAME |
|
|
|
from ..extras.constants import LLAMABOARD_CONFIG, PEFT_METHODS, TRAINING_STAGES |
|
from ..extras.misc import is_gpu_or_npu_available, torch_gc |
|
from ..extras.packages import is_gradio_available |
|
from .common import DEFAULT_CACHE_DIR, DEFAULT_CONFIG_DIR, QUANTIZATION_BITS, get_save_dir, load_config |
|
from .locales import ALERTS, LOCALES |
|
from .utils import abort_process, gen_cmd, get_eval_results, get_trainer_info, load_args, save_args, save_cmd |
|
|
|
|
|
if is_gradio_available(): |
|
import gradio as gr |
|
|
|
|
|
if TYPE_CHECKING: |
|
from gradio.components import Component |
|
|
|
from .manager import Manager |
|
|
|
|
|
class Runner: |
|
def __init__(self, manager: "Manager", demo_mode: bool = False) -> None: |
|
self.manager = manager |
|
self.demo_mode = demo_mode |
|
""" Resume """ |
|
self.trainer: Optional["Popen"] = None |
|
self.do_train = True |
|
self.running_data: Dict["Component", Any] = None |
|
""" State """ |
|
self.aborted = False |
|
self.running = False |
|
|
|
def set_abort(self) -> None: |
|
self.aborted = True |
|
if self.trainer is not None: |
|
abort_process(self.trainer.pid) |
|
|
|
def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str: |
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] |
|
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") |
|
dataset = get("train.dataset") if do_train else get("eval.dataset") |
|
|
|
if self.running: |
|
return ALERTS["err_conflict"][lang] |
|
|
|
if not model_name: |
|
return ALERTS["err_no_model"][lang] |
|
|
|
if not model_path: |
|
return ALERTS["err_no_path"][lang] |
|
|
|
if not dataset: |
|
return ALERTS["err_no_dataset"][lang] |
|
|
|
if not from_preview and self.demo_mode: |
|
return ALERTS["err_demo"][lang] |
|
|
|
if do_train: |
|
if not get("train.output_dir"): |
|
return ALERTS["err_no_output_dir"][lang] |
|
|
|
stage = TRAINING_STAGES[get("train.training_stage")] |
|
if stage == "ppo" and not get("train.reward_model"): |
|
return ALERTS["err_no_reward_model"][lang] |
|
else: |
|
if not get("eval.output_dir"): |
|
return ALERTS["err_no_output_dir"][lang] |
|
|
|
if not from_preview and not is_gpu_or_npu_available(): |
|
gr.Warning(ALERTS["warn_no_cuda"][lang]) |
|
|
|
return "" |
|
|
|
def _finalize(self, lang: str, finish_info: str) -> str: |
|
finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info |
|
self.trainer = None |
|
self.aborted = False |
|
self.running = False |
|
self.running_data = None |
|
torch_gc() |
|
return finish_info |
|
|
|
def _parse_train_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: |
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] |
|
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type") |
|
user_config = load_config() |
|
|
|
if get("top.quantization_bit") in QUANTIZATION_BITS: |
|
quantization_bit = int(get("top.quantization_bit")) |
|
else: |
|
quantization_bit = None |
|
|
|
args = dict( |
|
stage=TRAINING_STAGES[get("train.training_stage")], |
|
do_train=True, |
|
model_name_or_path=get("top.model_path"), |
|
cache_dir=user_config.get("cache_dir", None), |
|
preprocessing_num_workers=16, |
|
finetuning_type=finetuning_type, |
|
quantization_bit=quantization_bit, |
|
quantization_method=get("top.quantization_method"), |
|
template=get("top.template"), |
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, |
|
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", |
|
use_unsloth=(get("top.booster") == "unsloth"), |
|
visual_inputs=get("top.visual_inputs"), |
|
dataset_dir=get("train.dataset_dir"), |
|
dataset=",".join(get("train.dataset")), |
|
cutoff_len=get("train.cutoff_len"), |
|
learning_rate=float(get("train.learning_rate")), |
|
num_train_epochs=float(get("train.num_train_epochs")), |
|
max_samples=int(get("train.max_samples")), |
|
per_device_train_batch_size=get("train.batch_size"), |
|
gradient_accumulation_steps=get("train.gradient_accumulation_steps"), |
|
lr_scheduler_type=get("train.lr_scheduler_type"), |
|
max_grad_norm=float(get("train.max_grad_norm")), |
|
logging_steps=get("train.logging_steps"), |
|
save_steps=get("train.save_steps"), |
|
warmup_steps=get("train.warmup_steps"), |
|
neftune_noise_alpha=get("train.neftune_alpha") or None, |
|
optim=get("train.optim"), |
|
packing=get("train.packing") or get("train.neat_packing"), |
|
neat_packing=get("train.neat_packing"), |
|
resize_vocab=get("train.resize_vocab"), |
|
use_llama_pro=get("train.use_llama_pro"), |
|
shift_attn=get("train.shift_attn"), |
|
report_to="all" if get("train.report_to") else "none", |
|
use_galore=get("train.use_galore"), |
|
use_badam=get("train.use_badam"), |
|
output_dir=get_save_dir(model_name, finetuning_type, get("train.output_dir")), |
|
fp16=(get("train.compute_type") == "fp16"), |
|
bf16=(get("train.compute_type") == "bf16"), |
|
pure_bf16=(get("train.compute_type") == "pure_bf16"), |
|
plot_loss=True, |
|
ddp_timeout=180000000, |
|
include_num_input_tokens_seen=True, |
|
) |
|
|
|
|
|
if get("top.checkpoint_path"): |
|
if finetuning_type in PEFT_METHODS: |
|
args["adapter_name_or_path"] = ",".join( |
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")] |
|
) |
|
else: |
|
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path")) |
|
|
|
|
|
if args["finetuning_type"] == "freeze": |
|
args["freeze_trainable_layers"] = get("train.freeze_trainable_layers") |
|
args["freeze_trainable_modules"] = get("train.freeze_trainable_modules") |
|
args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None |
|
|
|
|
|
if args["finetuning_type"] == "lora": |
|
args["lora_rank"] = get("train.lora_rank") |
|
args["lora_alpha"] = get("train.lora_alpha") |
|
args["lora_dropout"] = get("train.lora_dropout") |
|
args["loraplus_lr_ratio"] = get("train.loraplus_lr_ratio") or None |
|
args["create_new_adapter"] = get("train.create_new_adapter") |
|
args["use_rslora"] = get("train.use_rslora") |
|
args["use_dora"] = get("train.use_dora") |
|
args["pissa_init"] = get("train.use_pissa") |
|
args["pissa_convert"] = get("train.use_pissa") |
|
args["lora_target"] = get("train.lora_target") or "all" |
|
args["additional_target"] = get("train.additional_target") or None |
|
|
|
if args["use_llama_pro"]: |
|
args["freeze_trainable_layers"] = get("train.freeze_trainable_layers") |
|
|
|
|
|
if args["stage"] == "ppo": |
|
if finetuning_type in PEFT_METHODS: |
|
args["reward_model"] = ",".join( |
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("train.reward_model")] |
|
) |
|
else: |
|
args["reward_model"] = get_save_dir(model_name, finetuning_type, get("train.reward_model")) |
|
|
|
args["reward_model_type"] = "lora" if finetuning_type == "lora" else "full" |
|
args["ppo_score_norm"] = get("train.ppo_score_norm") |
|
args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards") |
|
args["top_k"] = 0 |
|
args["top_p"] = 0.9 |
|
elif args["stage"] in ["dpo", "kto"]: |
|
args["pref_beta"] = get("train.pref_beta") |
|
args["pref_ftx"] = get("train.pref_ftx") |
|
args["pref_loss"] = get("train.pref_loss") |
|
|
|
|
|
if args["use_galore"]: |
|
args["galore_rank"] = get("train.galore_rank") |
|
args["galore_update_interval"] = get("train.galore_update_interval") |
|
args["galore_scale"] = get("train.galore_scale") |
|
args["galore_target"] = get("train.galore_target") |
|
|
|
|
|
if args["use_badam"]: |
|
args["badam_mode"] = get("train.badam_mode") |
|
args["badam_switch_mode"] = get("train.badam_switch_mode") |
|
args["badam_switch_interval"] = get("train.badam_switch_interval") |
|
args["badam_update_ratio"] = get("train.badam_update_ratio") |
|
|
|
|
|
if get("train.val_size") > 1e-6 and args["stage"] != "ppo": |
|
args["val_size"] = get("train.val_size") |
|
args["eval_strategy"] = "steps" |
|
args["eval_steps"] = args["save_steps"] |
|
args["per_device_eval_batch_size"] = args["per_device_train_batch_size"] |
|
|
|
|
|
if get("train.ds_stage") != "none": |
|
ds_stage = get("train.ds_stage") |
|
ds_offload = "offload_" if get("train.ds_offload") else "" |
|
args["deepspeed"] = os.path.join(DEFAULT_CACHE_DIR, "ds_z{}_{}config.json".format(ds_stage, ds_offload)) |
|
|
|
return args |
|
|
|
def _parse_eval_args(self, data: Dict["Component", Any]) -> Dict[str, Any]: |
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] |
|
model_name, finetuning_type = get("top.model_name"), get("top.finetuning_type") |
|
user_config = load_config() |
|
|
|
if get("top.quantization_bit") in QUANTIZATION_BITS: |
|
quantization_bit = int(get("top.quantization_bit")) |
|
else: |
|
quantization_bit = None |
|
|
|
args = dict( |
|
stage="sft", |
|
model_name_or_path=get("top.model_path"), |
|
cache_dir=user_config.get("cache_dir", None), |
|
preprocessing_num_workers=16, |
|
finetuning_type=finetuning_type, |
|
quantization_bit=quantization_bit, |
|
quantization_method=get("top.quantization_method"), |
|
template=get("top.template"), |
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, |
|
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", |
|
use_unsloth=(get("top.booster") == "unsloth"), |
|
visual_inputs=get("top.visual_inputs"), |
|
dataset_dir=get("eval.dataset_dir"), |
|
dataset=",".join(get("eval.dataset")), |
|
cutoff_len=get("eval.cutoff_len"), |
|
max_samples=int(get("eval.max_samples")), |
|
per_device_eval_batch_size=get("eval.batch_size"), |
|
predict_with_generate=True, |
|
max_new_tokens=get("eval.max_new_tokens"), |
|
top_p=get("eval.top_p"), |
|
temperature=get("eval.temperature"), |
|
output_dir=get_save_dir(model_name, finetuning_type, get("eval.output_dir")), |
|
) |
|
|
|
if get("eval.predict"): |
|
args["do_predict"] = True |
|
else: |
|
args["do_eval"] = True |
|
|
|
if get("top.checkpoint_path"): |
|
if finetuning_type in PEFT_METHODS: |
|
args["adapter_name_or_path"] = ",".join( |
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in get("top.checkpoint_path")] |
|
) |
|
else: |
|
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, get("top.checkpoint_path")) |
|
|
|
return args |
|
|
|
def _preview(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", str], None, None]: |
|
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval")) |
|
error = self._initialize(data, do_train, from_preview=True) |
|
if error: |
|
gr.Warning(error) |
|
yield {output_box: error} |
|
else: |
|
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) |
|
yield {output_box: gen_cmd(args)} |
|
|
|
def _launch(self, data: Dict["Component", Any], do_train: bool) -> Generator[Dict["Component", Any], None, None]: |
|
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if do_train else "eval")) |
|
error = self._initialize(data, do_train, from_preview=False) |
|
if error: |
|
gr.Warning(error) |
|
yield {output_box: error} |
|
else: |
|
self.do_train, self.running_data = do_train, data |
|
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data) |
|
|
|
os.makedirs(args["output_dir"], exist_ok=True) |
|
save_args(os.path.join(args["output_dir"], LLAMABOARD_CONFIG), self._form_config_dict(data)) |
|
|
|
env = deepcopy(os.environ) |
|
env["LLAMABOARD_ENABLED"] = "1" |
|
env["LLAMABOARD_WORKDIR"] = args["output_dir"] |
|
if args.get("deepspeed", None) is not None: |
|
env["FORCE_TORCHRUN"] = "1" |
|
|
|
self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True) |
|
yield from self.monitor() |
|
|
|
def _form_config_dict(self, data: Dict["Component", Any]) -> Dict[str, Any]: |
|
config_dict = {} |
|
skip_ids = ["top.lang", "top.model_path", "train.output_dir", "train.config_path"] |
|
for elem, value in data.items(): |
|
elem_id = self.manager.get_id_by_elem(elem) |
|
if elem_id not in skip_ids: |
|
config_dict[elem_id] = value |
|
|
|
return config_dict |
|
|
|
def preview_train(self, data): |
|
yield from self._preview(data, do_train=True) |
|
|
|
def preview_eval(self, data): |
|
yield from self._preview(data, do_train=False) |
|
|
|
def run_train(self, data): |
|
yield from self._launch(data, do_train=True) |
|
|
|
def run_eval(self, data): |
|
yield from self._launch(data, do_train=False) |
|
|
|
def monitor(self): |
|
self.aborted = False |
|
self.running = True |
|
|
|
get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)] |
|
lang, model_name, finetuning_type = get("top.lang"), get("top.model_name"), get("top.finetuning_type") |
|
output_dir = get("{}.output_dir".format("train" if self.do_train else "eval")) |
|
output_path = get_save_dir(model_name, finetuning_type, output_dir) |
|
|
|
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval")) |
|
progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval")) |
|
loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None |
|
|
|
while self.trainer is not None: |
|
if self.aborted: |
|
yield { |
|
output_box: ALERTS["info_aborting"][lang], |
|
progress_bar: gr.Slider(visible=False), |
|
} |
|
else: |
|
running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train) |
|
return_dict = { |
|
output_box: running_log, |
|
progress_bar: running_progress, |
|
} |
|
if running_loss is not None: |
|
return_dict[loss_viewer] = running_loss |
|
|
|
yield return_dict |
|
|
|
try: |
|
self.trainer.wait(2) |
|
self.trainer = None |
|
except TimeoutExpired: |
|
continue |
|
|
|
if self.do_train: |
|
if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)): |
|
finish_info = ALERTS["info_finished"][lang] |
|
else: |
|
finish_info = ALERTS["err_failed"][lang] |
|
else: |
|
if os.path.exists(os.path.join(output_path, "all_results.json")): |
|
finish_info = get_eval_results(os.path.join(output_path, "all_results.json")) |
|
else: |
|
finish_info = ALERTS["err_failed"][lang] |
|
|
|
return_dict = { |
|
output_box: self._finalize(lang, finish_info), |
|
progress_bar: gr.Slider(visible=False), |
|
} |
|
yield return_dict |
|
|
|
def save_args(self, data): |
|
output_box = self.manager.get_elem_by_id("train.output_box") |
|
error = self._initialize(data, do_train=True, from_preview=True) |
|
if error: |
|
gr.Warning(error) |
|
return {output_box: error} |
|
|
|
lang = data[self.manager.get_elem_by_id("top.lang")] |
|
config_path = data[self.manager.get_elem_by_id("train.config_path")] |
|
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True) |
|
save_path = os.path.join(DEFAULT_CONFIG_DIR, config_path) |
|
|
|
save_args(save_path, self._form_config_dict(data)) |
|
return {output_box: ALERTS["info_config_saved"][lang] + save_path} |
|
|
|
def load_args(self, lang: str, config_path: str): |
|
output_box = self.manager.get_elem_by_id("train.output_box") |
|
config_dict = load_args(os.path.join(DEFAULT_CONFIG_DIR, config_path)) |
|
if config_dict is None: |
|
gr.Warning(ALERTS["err_config_not_found"][lang]) |
|
return {output_box: ALERTS["err_config_not_found"][lang]} |
|
|
|
output_dict: Dict["Component", Any] = {output_box: ALERTS["info_config_loaded"][lang]} |
|
for elem_id, value in config_dict.items(): |
|
output_dict[self.manager.get_elem_by_id(elem_id)] = value |
|
|
|
return output_dict |
|
|
|
def check_output_dir(self, lang: str, model_name: str, finetuning_type: str, output_dir: str): |
|
output_box = self.manager.get_elem_by_id("train.output_box") |
|
output_dict: Dict["Component", Any] = {output_box: LOCALES["output_box"][lang]["value"]} |
|
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)): |
|
gr.Warning(ALERTS["warn_output_dir_exists"][lang]) |
|
output_dict[output_box] = ALERTS["warn_output_dir_exists"][lang] |
|
|
|
output_dir = get_save_dir(model_name, finetuning_type, output_dir) |
|
config_dict = load_args(os.path.join(output_dir, LLAMABOARD_CONFIG)) |
|
for elem_id, value in config_dict.items(): |
|
output_dict[self.manager.get_elem_by_id(elem_id)] = value |
|
|
|
return output_dict |
|
|