|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from collections import defaultdict |
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
from yaml import safe_dump, safe_load |
|
|
|
from ..extras.constants import ( |
|
CHECKPOINT_NAMES, |
|
DATA_CONFIG, |
|
DEFAULT_TEMPLATE, |
|
PEFT_METHODS, |
|
STAGES_USE_PAIR_DATA, |
|
SUPPORTED_MODELS, |
|
TRAINING_STAGES, |
|
VISION_MODELS, |
|
DownloadSource, |
|
) |
|
from ..extras.logging import get_logger |
|
from ..extras.misc import use_modelscope |
|
from ..extras.packages import is_gradio_available |
|
|
|
|
|
if is_gradio_available(): |
|
import gradio as gr |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
DEFAULT_CACHE_DIR = "cache" |
|
DEFAULT_CONFIG_DIR = "config" |
|
DEFAULT_DATA_DIR = "data" |
|
DEFAULT_SAVE_DIR = "saves" |
|
USER_CONFIG = "user_config.yaml" |
|
QUANTIZATION_BITS = ["8", "6", "5", "4", "3", "2", "1"] |
|
GPTQ_BITS = ["8", "4", "3", "2"] |
|
|
|
|
|
def get_save_dir(*paths: str) -> os.PathLike: |
|
r""" |
|
Gets the path to saved model checkpoints. |
|
""" |
|
if os.path.sep in paths[-1]: |
|
logger.warning("Found complex path, some features may be not available.") |
|
return paths[-1] |
|
|
|
paths = (path.replace(" ", "").strip() for path in paths) |
|
return os.path.join(DEFAULT_SAVE_DIR, *paths) |
|
|
|
|
|
def get_config_path() -> os.PathLike: |
|
r""" |
|
Gets the path to user config. |
|
""" |
|
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) |
|
|
|
|
|
def load_config() -> Dict[str, Any]: |
|
r""" |
|
Loads user config if exists. |
|
""" |
|
try: |
|
with open(get_config_path(), "r", encoding="utf-8") as f: |
|
return safe_load(f) |
|
except Exception: |
|
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} |
|
|
|
|
|
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: |
|
r""" |
|
Saves user config. |
|
""" |
|
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) |
|
user_config = load_config() |
|
user_config["lang"] = lang or user_config["lang"] |
|
if model_name: |
|
user_config["last_model"] = model_name |
|
|
|
if model_name and model_path: |
|
user_config["path_dict"][model_name] = model_path |
|
|
|
with open(get_config_path(), "w", encoding="utf-8") as f: |
|
safe_dump(user_config, f) |
|
|
|
|
|
def get_model_path(model_name: str) -> str: |
|
r""" |
|
Gets the model path according to the model name. |
|
""" |
|
user_config = load_config() |
|
path_dict: Dict["DownloadSource", str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) |
|
model_path = user_config["path_dict"].get(model_name, "") or path_dict.get(DownloadSource.DEFAULT, "") |
|
if ( |
|
use_modelscope() |
|
and path_dict.get(DownloadSource.MODELSCOPE) |
|
and model_path == path_dict.get(DownloadSource.DEFAULT) |
|
): |
|
model_path = path_dict.get(DownloadSource.MODELSCOPE) |
|
|
|
return model_path |
|
|
|
|
|
def get_prefix(model_name: str) -> str: |
|
r""" |
|
Gets the prefix of the model name to obtain the model family. |
|
""" |
|
return model_name.split("-")[0] |
|
|
|
|
|
def get_model_info(model_name: str) -> Tuple[str, str, bool]: |
|
r""" |
|
Gets the necessary information of this model. |
|
|
|
Returns: |
|
model_path (str) |
|
template (str) |
|
visual (bool) |
|
""" |
|
return get_model_path(model_name), get_template(model_name), get_visual(model_name) |
|
|
|
|
|
def get_template(model_name: str) -> str: |
|
r""" |
|
Gets the template name if the model is a chat model. |
|
""" |
|
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE: |
|
return DEFAULT_TEMPLATE[get_prefix(model_name)] |
|
return "default" |
|
|
|
|
|
def get_visual(model_name: str) -> bool: |
|
r""" |
|
Judges if the model is a vision language model. |
|
""" |
|
return get_prefix(model_name) in VISION_MODELS |
|
|
|
|
|
def list_checkpoints(model_name: str, finetuning_type: str) -> "gr.Dropdown": |
|
r""" |
|
Lists all available checkpoints. |
|
""" |
|
checkpoints = [] |
|
if model_name: |
|
save_dir = get_save_dir(model_name, finetuning_type) |
|
if save_dir and os.path.isdir(save_dir): |
|
for checkpoint in os.listdir(save_dir): |
|
if os.path.isdir(os.path.join(save_dir, checkpoint)) and any( |
|
os.path.isfile(os.path.join(save_dir, checkpoint, name)) for name in CHECKPOINT_NAMES |
|
): |
|
checkpoints.append(checkpoint) |
|
|
|
if finetuning_type in PEFT_METHODS: |
|
return gr.Dropdown(value=[], choices=checkpoints, multiselect=True) |
|
else: |
|
return gr.Dropdown(value=None, choices=checkpoints, multiselect=False) |
|
|
|
|
|
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: |
|
r""" |
|
Loads dataset_info.json. |
|
""" |
|
if dataset_dir == "ONLINE": |
|
logger.info("dataset_dir is ONLINE, using online dataset.") |
|
return {} |
|
|
|
try: |
|
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
except Exception as err: |
|
logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) |
|
return {} |
|
|
|
|
|
def list_datasets(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown": |
|
r""" |
|
Lists all available datasets in the dataset dir for the training stage. |
|
""" |
|
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) |
|
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA |
|
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] |
|
return gr.Dropdown(choices=datasets) |
|
|