|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from typing import TYPE_CHECKING, Dict, Generator, List, Optional, Sequence, Tuple |
|
|
|
from numpy.typing import NDArray |
|
|
|
from ..chat import ChatModel |
|
from ..data import Role |
|
from ..extras.constants import PEFT_METHODS |
|
from ..extras.misc import torch_gc |
|
from ..extras.packages import is_gradio_available |
|
from .common import QUANTIZATION_BITS, get_save_dir |
|
from .locales import ALERTS |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..chat import BaseEngine |
|
from .manager import Manager |
|
|
|
|
|
if is_gradio_available(): |
|
import gradio as gr |
|
|
|
|
|
class WebChatModel(ChatModel): |
|
def __init__(self, manager: "Manager", demo_mode: bool = False, lazy_init: bool = True) -> None: |
|
self.manager = manager |
|
self.demo_mode = demo_mode |
|
self.engine: Optional["BaseEngine"] = None |
|
|
|
if not lazy_init: |
|
super().__init__() |
|
|
|
if demo_mode and os.environ.get("DEMO_MODEL") and os.environ.get("DEMO_TEMPLATE"): |
|
model_name_or_path = os.environ.get("DEMO_MODEL") |
|
template = os.environ.get("DEMO_TEMPLATE") |
|
infer_backend = os.environ.get("DEMO_BACKEND", "huggingface") |
|
super().__init__( |
|
dict(model_name_or_path=model_name_or_path, template=template, infer_backend=infer_backend) |
|
) |
|
|
|
@property |
|
def loaded(self) -> bool: |
|
return self.engine is not None |
|
|
|
def load_model(self, data) -> Generator[str, None, None]: |
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)] |
|
lang, model_name, model_path = get("top.lang"), get("top.model_name"), get("top.model_path") |
|
finetuning_type, checkpoint_path = get("top.finetuning_type"), get("top.checkpoint_path") |
|
error = "" |
|
if self.loaded: |
|
error = ALERTS["err_exists"][lang] |
|
elif not model_name: |
|
error = ALERTS["err_no_model"][lang] |
|
elif not model_path: |
|
error = ALERTS["err_no_path"][lang] |
|
elif self.demo_mode: |
|
error = ALERTS["err_demo"][lang] |
|
|
|
if error: |
|
gr.Warning(error) |
|
yield error |
|
return |
|
|
|
if get("top.quantization_bit") in QUANTIZATION_BITS: |
|
quantization_bit = int(get("top.quantization_bit")) |
|
else: |
|
quantization_bit = None |
|
|
|
yield ALERTS["info_loading"][lang] |
|
args = dict( |
|
model_name_or_path=model_path, |
|
finetuning_type=finetuning_type, |
|
quantization_bit=quantization_bit, |
|
quantization_method=get("top.quantization_method"), |
|
template=get("top.template"), |
|
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto", |
|
use_unsloth=(get("top.booster") == "unsloth"), |
|
visual_inputs=get("top.visual_inputs"), |
|
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None, |
|
infer_backend=get("infer.infer_backend"), |
|
infer_dtype=get("infer.infer_dtype"), |
|
) |
|
|
|
if checkpoint_path: |
|
if finetuning_type in PEFT_METHODS: |
|
args["adapter_name_or_path"] = ",".join( |
|
[get_save_dir(model_name, finetuning_type, adapter) for adapter in checkpoint_path] |
|
) |
|
else: |
|
args["model_name_or_path"] = get_save_dir(model_name, finetuning_type, checkpoint_path) |
|
|
|
super().__init__(args) |
|
yield ALERTS["info_loaded"][lang] |
|
|
|
def unload_model(self, data) -> Generator[str, None, None]: |
|
lang = data[self.manager.get_elem_by_id("top.lang")] |
|
|
|
if self.demo_mode: |
|
gr.Warning(ALERTS["err_demo"][lang]) |
|
yield ALERTS["err_demo"][lang] |
|
return |
|
|
|
yield ALERTS["info_unloading"][lang] |
|
self.engine = None |
|
torch_gc() |
|
yield ALERTS["info_unloaded"][lang] |
|
|
|
def append( |
|
self, |
|
chatbot: List[List[Optional[str]]], |
|
messages: Sequence[Dict[str, str]], |
|
role: str, |
|
query: str, |
|
) -> Tuple[List[List[Optional[str]]], List[Dict[str, str]], str]: |
|
return chatbot + [[query, None]], messages + [{"role": role, "content": query}], "" |
|
|
|
def stream( |
|
self, |
|
chatbot: List[List[Optional[str]]], |
|
messages: Sequence[Dict[str, str]], |
|
system: str, |
|
tools: str, |
|
image: Optional[NDArray], |
|
max_new_tokens: int, |
|
top_p: float, |
|
temperature: float, |
|
) -> Generator[Tuple[List[List[Optional[str]]], List[Dict[str, str]]], None, None]: |
|
chatbot[-1][1] = "" |
|
response = "" |
|
for new_text in self.stream_chat( |
|
messages, system, tools, image, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature |
|
): |
|
response += new_text |
|
if tools: |
|
result = self.engine.template.extract_tool(response) |
|
else: |
|
result = response |
|
|
|
if isinstance(result, list): |
|
tool_calls = [{"name": tool[0], "arguments": json.loads(tool[1])} for tool in result] |
|
tool_calls = json.dumps(tool_calls, indent=4, ensure_ascii=False) |
|
output_messages = messages + [{"role": Role.FUNCTION.value, "content": tool_calls}] |
|
bot_text = "```json\n" + tool_calls + "\n```" |
|
else: |
|
output_messages = messages + [{"role": Role.ASSISTANT.value, "content": result}] |
|
bot_text = result |
|
|
|
chatbot[-1][1] = bot_text |
|
yield chatbot, output_messages |
|
|