|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import Trainer |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from transformers.optimization import get_scheduler |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS |
|
from transformers.trainer_pt_utils import get_parameter_names |
|
|
|
from ..extras.constants import IGNORE_INDEX |
|
from ..extras.logging import get_logger |
|
from ..extras.packages import is_galore_available |
|
from ..hparams import FinetuningArguments, ModelArguments |
|
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params |
|
|
|
|
|
if is_galore_available(): |
|
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, Seq2SeqTrainingArguments |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from ..hparams import DataArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
class DummyOptimizer(torch.optim.Optimizer): |
|
r""" |
|
A dummy optimizer used for the GaLore algorithm. |
|
""" |
|
|
|
def __init__( |
|
self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None |
|
) -> None: |
|
dummy_tensor = torch.randn(1, 1) |
|
self.optimizer_dict = optimizer_dict |
|
super().__init__([dummy_tensor], {"lr": lr}) |
|
|
|
def zero_grad(self, set_to_none: bool = True) -> None: |
|
pass |
|
|
|
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: |
|
pass |
|
|
|
|
|
def create_modelcard_and_push( |
|
trainer: "Trainer", |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> None: |
|
kwargs = { |
|
"tasks": "text-generation", |
|
"finetuned_from": model_args.model_name_or_path, |
|
"tags": ["llama-factory", finetuning_args.finetuning_type], |
|
} |
|
if data_args.dataset is not None: |
|
kwargs["dataset"] = [dataset.strip() for dataset in data_args.dataset.split(",")] |
|
|
|
if model_args.use_unsloth: |
|
kwargs["tags"] = kwargs["tags"] + ["unsloth"] |
|
|
|
if not training_args.do_train: |
|
pass |
|
elif training_args.push_to_hub: |
|
trainer.push_to_hub(**kwargs) |
|
else: |
|
trainer.create_model_card(license="other", **kwargs) |
|
|
|
|
|
def create_ref_model( |
|
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False |
|
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]: |
|
r""" |
|
Creates reference model for PPO/DPO training. Evaluation mode is not supported. |
|
|
|
The valuehead parameter is randomly initialized since it is useless for PPO training. |
|
""" |
|
if finetuning_args.ref_model is not None: |
|
ref_model_args = ModelArguments.copyfrom( |
|
model_args, |
|
model_name_or_path=finetuning_args.ref_model, |
|
adapter_name_or_path=finetuning_args.ref_model_adapters, |
|
quantization_bit=finetuning_args.ref_model_quantization_bit, |
|
) |
|
ref_finetuning_args = FinetuningArguments() |
|
tokenizer = load_tokenizer(ref_model_args)["tokenizer"] |
|
ref_model = load_model( |
|
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead |
|
) |
|
logger.info("Created reference model from {}".format(finetuning_args.ref_model)) |
|
else: |
|
if finetuning_args.finetuning_type == "lora": |
|
ref_model = None |
|
else: |
|
ref_model_args = ModelArguments.copyfrom(model_args) |
|
ref_finetuning_args = FinetuningArguments() |
|
tokenizer = load_tokenizer(ref_model_args)["tokenizer"] |
|
ref_model = load_model( |
|
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead |
|
) |
|
logger.info("Created reference model from the model itself.") |
|
|
|
return ref_model |
|
|
|
|
|
def create_reward_model( |
|
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments" |
|
) -> Optional["AutoModelForCausalLMWithValueHead"]: |
|
r""" |
|
Creates reward model for PPO training. |
|
""" |
|
if finetuning_args.reward_model_type == "api": |
|
assert finetuning_args.reward_model.startswith("http"), "Please provide full url." |
|
logger.info("Use reward server {}".format(finetuning_args.reward_model)) |
|
return finetuning_args.reward_model |
|
elif finetuning_args.reward_model_type == "lora": |
|
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward") |
|
for name, param in model.named_parameters(): |
|
if "default" in name: |
|
param.data = param.data.to(torch.float32) |
|
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args) |
|
assert vhead_params is not None, "Reward model is not correctly loaded." |
|
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False) |
|
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False) |
|
model.register_buffer( |
|
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False |
|
) |
|
model.register_buffer( |
|
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False |
|
) |
|
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model)) |
|
return None |
|
else: |
|
reward_model_args = ModelArguments.copyfrom( |
|
model_args, |
|
model_name_or_path=finetuning_args.reward_model, |
|
adapter_name_or_path=finetuning_args.reward_model_adapters, |
|
quantization_bit=finetuning_args.reward_model_quantization_bit, |
|
) |
|
reward_finetuning_args = FinetuningArguments() |
|
tokenizer = load_tokenizer(reward_model_args)["tokenizer"] |
|
reward_model = load_model( |
|
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True |
|
) |
|
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model)) |
|
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.") |
|
return reward_model |
|
|
|
|
|
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]: |
|
r""" |
|
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers) |
|
""" |
|
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS) |
|
decay_parameters = [name for name in decay_parameters if "bias" not in name] |
|
return decay_parameters |
|
|
|
|
|
def _create_galore_optimizer( |
|
model: "PreTrainedModel", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> "torch.optim.Optimizer": |
|
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all": |
|
galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower) |
|
else: |
|
galore_targets = finetuning_args.galore_target |
|
|
|
galore_params: List["torch.nn.Parameter"] = [] |
|
for name, module in model.named_modules(): |
|
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets): |
|
for param in module.parameters(): |
|
if param.requires_grad and len(param.shape) > 1: |
|
galore_params.append(param) |
|
|
|
galore_kwargs = { |
|
"rank": finetuning_args.galore_rank, |
|
"update_proj_gap": finetuning_args.galore_update_interval, |
|
"scale": finetuning_args.galore_scale, |
|
"proj_type": finetuning_args.galore_proj_type, |
|
} |
|
|
|
id_galore_params = {id(param) for param in galore_params} |
|
decay_params, nodecay_params = [], [] |
|
trainable_params: List["torch.nn.Parameter"] = [] |
|
decay_param_names = _get_decay_parameter_names(model) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
trainable_params.append(param) |
|
if id(param) not in id_galore_params: |
|
if name in decay_param_names: |
|
decay_params.append(param) |
|
else: |
|
nodecay_params.append(param) |
|
|
|
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) |
|
|
|
if training_args.optim == "adamw_torch": |
|
optim_class = GaLoreAdamW |
|
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]: |
|
optim_class = GaLoreAdamW8bit |
|
elif training_args.optim == "adafactor": |
|
optim_class = GaLoreAdafactor |
|
else: |
|
raise NotImplementedError("Unknow optim: {}".format(training_args.optim)) |
|
|
|
if finetuning_args.galore_layerwise: |
|
if training_args.gradient_accumulation_steps != 1: |
|
raise ValueError("Per-layer GaLore does not support gradient accumulation.") |
|
|
|
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {} |
|
for param in nodecay_params: |
|
param_groups = [dict(params=[param], weight_decay=0.0)] |
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) |
|
for param in decay_params: |
|
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)] |
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) |
|
for param in galore_params: |
|
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)] |
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs) |
|
|
|
def optimizer_hook(param: "torch.nn.Parameter"): |
|
if param.grad is not None: |
|
optimizer_dict[param].step() |
|
optimizer_dict[param].zero_grad() |
|
|
|
for param in trainable_params: |
|
param.register_post_accumulate_grad_hook(optimizer_hook) |
|
|
|
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict) |
|
else: |
|
param_groups = [ |
|
dict(params=nodecay_params, weight_decay=0.0), |
|
dict(params=decay_params, weight_decay=training_args.weight_decay), |
|
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs), |
|
] |
|
optimizer = optim_class(param_groups, **optim_kwargs) |
|
|
|
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.") |
|
return optimizer |
|
|
|
|
|
def _create_loraplus_optimizer( |
|
model: "PreTrainedModel", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> "torch.optim.Optimizer": |
|
default_lr = training_args.learning_rate |
|
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio |
|
embedding_lr = finetuning_args.loraplus_lr_embedding |
|
|
|
decay_param_names = _get_decay_parameter_names(model) |
|
param_dict: Dict[str, List["torch.nn.Parameter"]] = { |
|
"lora_a": [], |
|
"lora_b": [], |
|
"lora_b_nodecay": [], |
|
"embedding": [], |
|
} |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
if "lora_embedding_B" in name: |
|
param_dict["embedding"].append(param) |
|
elif "lora_B" in name or param.ndim == 1: |
|
if name in decay_param_names: |
|
param_dict["lora_b"].append(param) |
|
else: |
|
param_dict["lora_b_nodecay"].append(param) |
|
else: |
|
param_dict["lora_a"].append(param) |
|
|
|
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) |
|
param_groups = [ |
|
dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay), |
|
dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay), |
|
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0), |
|
dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay), |
|
] |
|
optimizer = optim_class(param_groups, **optim_kwargs) |
|
logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio)) |
|
return optimizer |
|
|
|
|
|
def _create_badam_optimizer( |
|
model: "PreTrainedModel", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> "torch.optim.Optimizer": |
|
decay_params, nodecay_params = [], [] |
|
decay_param_names = _get_decay_parameter_names(model) |
|
for name, param in model.named_parameters(): |
|
if param.requires_grad: |
|
if name in decay_param_names: |
|
decay_params.append(param) |
|
else: |
|
nodecay_params.append(param) |
|
|
|
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args) |
|
param_groups = [ |
|
dict(params=nodecay_params, weight_decay=0.0), |
|
dict(params=decay_params, weight_decay=training_args.weight_decay), |
|
] |
|
|
|
if finetuning_args.badam_mode == "layer": |
|
from badam import BlockOptimizer |
|
|
|
base_optimizer = optim_class(param_groups, **optim_kwargs) |
|
optimizer = BlockOptimizer( |
|
base_optimizer=base_optimizer, |
|
named_parameters_list=list(model.named_parameters()), |
|
block_prefix_list=None, |
|
switch_block_every=finetuning_args.badam_switch_interval, |
|
start_block=finetuning_args.badam_start_block, |
|
switch_mode=finetuning_args.badam_switch_mode, |
|
verbose=finetuning_args.badam_verbose, |
|
ds_zero3_enabled=is_deepspeed_zero3_enabled(), |
|
) |
|
logger.info( |
|
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, " |
|
f"switch block every {finetuning_args.badam_switch_interval} steps, " |
|
f"default start block is {finetuning_args.badam_start_block}" |
|
) |
|
|
|
elif finetuning_args.badam_mode == "ratio": |
|
from badam import BlockOptimizerRatio |
|
|
|
assert finetuning_args.badam_update_ratio > 1e-6 |
|
optimizer = BlockOptimizerRatio( |
|
param_groups=param_groups, |
|
named_parameters_list=list(model.named_parameters()), |
|
update_ratio=finetuning_args.badam_update_ratio, |
|
mask_mode=finetuning_args.badam_mask_mode, |
|
verbose=finetuning_args.badam_verbose, |
|
include_embedding=False, |
|
**optim_kwargs, |
|
) |
|
logger.info( |
|
f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, " |
|
f"mask mode is {finetuning_args.badam_mask_mode}" |
|
) |
|
|
|
return optimizer |
|
|
|
|
|
def create_custom_optimzer( |
|
model: "PreTrainedModel", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
) -> Optional["torch.optim.Optimizer"]: |
|
if finetuning_args.use_galore: |
|
return _create_galore_optimizer(model, training_args, finetuning_args) |
|
|
|
if finetuning_args.loraplus_lr_ratio is not None: |
|
return _create_loraplus_optimizer(model, training_args, finetuning_args) |
|
|
|
if finetuning_args.use_badam: |
|
return _create_badam_optimizer(model, training_args, finetuning_args) |
|
|
|
|
|
def create_custom_scheduler( |
|
training_args: "Seq2SeqTrainingArguments", |
|
num_training_steps: int, |
|
optimizer: Optional["torch.optim.Optimizer"] = None, |
|
) -> None: |
|
if optimizer is not None and isinstance(optimizer, DummyOptimizer): |
|
optimizer_dict = optimizer.optimizer_dict |
|
scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {} |
|
|
|
for param in optimizer_dict.keys(): |
|
scheduler_dict[param] = get_scheduler( |
|
training_args.lr_scheduler_type, |
|
optimizer=optimizer_dict[param], |
|
num_warmup_steps=training_args.get_warmup_steps(num_training_steps), |
|
num_training_steps=num_training_steps, |
|
scheduler_specific_kwargs=training_args.lr_scheduler_kwargs, |
|
) |
|
|
|
def scheduler_hook(param: "torch.nn.Parameter"): |
|
scheduler_dict[param].step() |
|
|
|
for param in optimizer_dict.keys(): |
|
param.register_post_accumulate_grad_hook(scheduler_hook) |
|
|
|
|
|
def get_batch_logps( |
|
logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX |
|
) -> Tuple["torch.Tensor", "torch.Tensor"]: |
|
r""" |
|
Computes the log probabilities of the given labels under the given logits. |
|
|
|
Returns: |
|
logps: A tensor of shape (batch_size,) containing the sum of log probabilities. |
|
valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens. |
|
""" |
|
if logits.shape[:-1] != labels.shape: |
|
raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.") |
|
|
|
labels = labels[:, 1:].clone() |
|
logits = logits[:, :-1, :] |
|
loss_mask = labels != label_pad_token_id |
|
labels[labels == label_pad_token_id] = 0 |
|
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) |
|
return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1) |
|
|