|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import TYPE_CHECKING, List, Optional |
|
|
|
from transformers import DataCollatorForLanguageModeling |
|
|
|
from ...data import get_dataset, split_dataset |
|
from ...extras.ploting import plot_loss |
|
from ...model import load_model, load_tokenizer |
|
from ..trainer_utils import create_modelcard_and_push |
|
from .trainer import CustomTrainer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback |
|
|
|
from ...hparams import DataArguments, FinetuningArguments, ModelArguments |
|
|
|
|
|
def run_pt( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
finetuning_args: "FinetuningArguments", |
|
callbacks: Optional[List["TrainerCallback"]] = None, |
|
): |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
dataset = get_dataset(model_args, data_args, training_args, stage="pt", **tokenizer_module) |
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) |
|
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) |
|
|
|
|
|
trainer = CustomTrainer( |
|
model=model, |
|
args=training_args, |
|
finetuning_args=finetuning_args, |
|
data_collator=data_collator, |
|
callbacks=callbacks, |
|
**tokenizer_module, |
|
**split_dataset(dataset, data_args, training_args), |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
if trainer.is_world_process_zero() and finetuning_args.plot_loss: |
|
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate(metric_key_prefix="eval") |
|
try: |
|
perplexity = math.exp(metrics["eval_loss"]) |
|
except OverflowError: |
|
perplexity = float("inf") |
|
|
|
metrics["perplexity"] = perplexity |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) |
|
|