sunatte's picture
Upload folder using huggingface_hub
2b915e2 verified
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import signal
import sys
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import TYPE_CHECKING, Any, Dict, Optional
import torch
import transformers
from peft import PeftModel
from transformers import PreTrainedModel, ProcessorMixin, TrainerCallback
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
from transformers.utils import (
SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
is_safetensors_available,
)
from ..extras.constants import TRAINER_LOG, V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ..extras.logging import LoggerHandler, get_logger
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import save_file
if TYPE_CHECKING:
from transformers import TrainerControl, TrainerState, TrainingArguments
from trl import AutoModelForCausalLMWithValueHead
logger = get_logger(__name__)
def fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead", output_dir: str, safe_serialization: bool
) -> None:
r"""
The model is already unwrapped.
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "", count=1)] = param
model.pretrained_model.save_pretrained(
output_dir, state_dict=decoder_state_dict or None, safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
os.remove(path_to_checkpoint)
logger.info("Value head model saved at: {}".format(output_dir))
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors,
)
class SaveProcessorCallback(TrainerCallback):
def __init__(self, processor: "ProcessorMixin") -> None:
r"""
Initializes a callback for saving the processor.
"""
self.processor = processor
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
getattr(self.processor, "image_processor").save_pretrained(args.output_dir)
class PissaConvertCallback(TrainerCallback):
r"""
Initializes a callback for converting the PiSSA adapter to a normal one.
"""
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the beginning of training.
"""
if args.should_save:
model = kwargs.pop("model")
pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir))
if isinstance(model, PeftModel):
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
setattr(model.peft_config["default"], "init_lora_weights", True)
model.save_pretrained(pissa_init_dir, safe_serialization=args.save_safetensors)
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
if args.should_save:
model = kwargs.pop("model")
pissa_init_dir = os.path.join(args.output_dir, "pissa_init")
pissa_backup_dir = os.path.join(args.output_dir, "pissa_backup")
pissa_convert_dir = os.path.join(args.output_dir, "pissa_converted")
logger.info("Converted PiSSA adapter will be saved at: {}.".format(pissa_convert_dir))
# 1. save a pissa backup with init_lora_weights: True
# 2. save a converted lora with init_lora_weights: pissa
# 3. load the pissa backup with init_lora_weights: True
# 4. delete the initial adapter and change init_lora_weights to pissa
if isinstance(model, PeftModel):
init_lora_weights = getattr(model.peft_config["default"], "init_lora_weights")
setattr(model.peft_config["default"], "init_lora_weights", True)
model.save_pretrained(pissa_backup_dir, safe_serialization=args.save_safetensors)
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
model.save_pretrained(
pissa_convert_dir, safe_serialization=args.save_safetensors, convert_pissa_to_lora=pissa_init_dir
)
model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
model.set_adapter("default")
model.delete_adapter("pissa_init")
setattr(model.peft_config["default"], "init_lora_weights", init_lora_weights)
class LogCallback(TrainerCallback):
def __init__(self) -> None:
r"""
Initializes a callback for logging training and evaluation status.
"""
""" Progress """
self.start_time = 0
self.cur_steps = 0
self.max_steps = 0
self.elapsed_time = ""
self.remaining_time = ""
self.thread_pool: Optional["ThreadPoolExecutor"] = None
""" Status """
self.aborted = False
self.do_train = False
""" Web UI """
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
if self.webui_mode:
signal.signal(signal.SIGABRT, self._set_abort)
self.logger_handler = LoggerHandler(os.environ.get("LLAMABOARD_WORKDIR"))
logging.root.addHandler(self.logger_handler)
transformers.logging.add_handler(self.logger_handler)
def _set_abort(self, signum, frame) -> None:
self.aborted = True
def _reset(self, max_steps: int = 0) -> None:
self.start_time = time.time()
self.cur_steps = 0
self.max_steps = max_steps
self.elapsed_time = ""
self.remaining_time = ""
def _timing(self, cur_steps: int) -> None:
cur_time = time.time()
elapsed_time = cur_time - self.start_time
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
self.cur_steps = cur_steps
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n")
def _create_thread_pool(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
self.thread_pool = ThreadPoolExecutor(max_workers=1)
def _close_thread_pool(self) -> None:
if self.thread_pool is not None:
self.thread_pool.shutdown(wait=True)
self.thread_pool = None
def on_init_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of the initialization of the `Trainer`.
"""
if (
args.should_save
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
and args.overwrite_output_dir
):
logger.warning("Previous trainer log in this folder will be deleted.")
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the beginning of training.
"""
if args.should_save:
self.do_train = True
self._reset(max_steps=state.max_steps)
self._create_thread_pool(output_dir=args.output_dir)
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of training.
"""
self._close_thread_pool()
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of an substep during gradient accumulation.
"""
if self.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_step_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called at the end of a training step.
"""
if self.aborted:
control.should_epoch_stop = True
control.should_training_stop = True
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after an evaluation phase.
"""
if not self.do_train:
self._close_thread_pool()
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a successful prediction.
"""
if not self.do_train:
self._close_thread_pool()
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after logging the last logs.
"""
if not args.should_save:
return
self._timing(cur_steps=state.global_step)
logs = dict(
current_steps=self.cur_steps,
total_steps=self.max_steps,
loss=state.log_history[-1].get("loss", None),
eval_loss=state.log_history[-1].get("eval_loss", None),
predict_loss=state.log_history[-1].get("predict_loss", None),
reward=state.log_history[-1].get("reward", None),
accuracy=state.log_history[-1].get("rewards/accuracies", None),
learning_rate=state.log_history[-1].get("learning_rate", None),
epoch=state.log_history[-1].get("epoch", None),
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time,
throughput="{:.2f}".format(state.num_input_tokens_seen / (time.time() - self.start_time)),
total_tokens=state.num_input_tokens_seen,
)
logs = {k: v for k, v in logs.items() if v is not None}
if self.webui_mode and all(key in logs for key in ["loss", "learning_rate", "epoch"]):
logger.info(
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}, 'throughput': {}}}".format(
logs["loss"], logs["learning_rate"], logs["epoch"], logs["throughput"]
)
)
if self.thread_pool is not None:
self.thread_pool.submit(self._write_log, args.output_dir, logs)
def on_prediction_step(
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
):
r"""
Event called after a prediction step.
"""
if self.do_train:
return
if self.aborted:
sys.exit(0)
if not args.should_save:
return
eval_dataloader = kwargs.pop("eval_dataloader", None)
if has_length(eval_dataloader):
if self.max_steps == 0:
self._reset(max_steps=len(eval_dataloader))
self._create_thread_pool(output_dir=args.output_dir)
self._timing(cur_steps=self.cur_steps + 1)
if self.cur_steps % 5 == 0 and self.thread_pool is not None:
logs = dict(
current_steps=self.cur_steps,
total_steps=self.max_steps,
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
elapsed_time=self.elapsed_time,
remaining_time=self.remaining_time,
)
self.thread_pool.submit(self._write_log, args.output_dir, logs)