|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Tuple |
|
|
|
import torch |
|
import transformers.models |
|
from transformers.activations import ACT2FN |
|
from transformers.utils import logging |
|
|
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
transformers_logger = logging.get_logger(__name__) |
|
|
|
|
|
class LlavaMultiModalProjectorForYiVL(torch.nn.Module): |
|
def __init__(self, config: "LlavaConfig") -> None: |
|
super().__init__() |
|
|
|
self.config = config |
|
if config is None: |
|
return |
|
|
|
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) |
|
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) |
|
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) |
|
self.act = ACT2FN[config.projector_hidden_act] |
|
|
|
def forward(self, image_features: "torch.Tensor") -> "torch.Tensor": |
|
hidden_states = self.linear_1(image_features) |
|
hidden_states = self.linear_2(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_3(hidden_states) |
|
hidden_states = self.linear_4(hidden_states) |
|
if hidden_states.dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.linear_1.weight.dtype |
|
|
|
transformers_logger.warning_once("The hidden states seems to be silently casted in float32.") |
|
hidden_states = hidden_states.to(target_dtype) |
|
|
|
return hidden_states |
|
|
|
|
|
class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL): |
|
def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None: |
|
super().__init__(config=None) |
|
|
|
self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True) |
|
self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True) |
|
self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True) |
|
self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True) |
|
self.act = ACT2FN[projector_hidden_act] |
|
|
|
|
|
def autocast_projector_dtype( |
|
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector" |
|
) -> None: |
|
def _mm_projector_forward_post_hook( |
|
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" |
|
) -> "torch.Tensor": |
|
return output.to(model_args.compute_dtype) |
|
|
|
if hasattr(model, mm_projector_name) and getattr(model, "quantization_method", None): |
|
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) |
|
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) |
|
mm_projector.register_forward_hook(_mm_projector_forward_post_hook) |
|
|
|
|
|
def configure_visual_model(config: "PretrainedConfig") -> None: |
|
if getattr(config, "model_type", None) == "llava": |
|
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) |
|
|
|
if getattr(config, "is_yi_vl_derived_model", None): |
|
logger.info("Detected Yi-VL model, applying projector patch.") |
|
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL |
|
|