|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import TYPE_CHECKING |
|
|
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None: |
|
if model_args.rope_scaling is None: |
|
return |
|
|
|
if not hasattr(config, "rope_scaling"): |
|
logger.warning("Current model does not support RoPE scaling.") |
|
return |
|
|
|
if model_args.model_max_length is not None: |
|
if is_trainable and model_args.rope_scaling == "dynamic": |
|
logger.warning( |
|
"Dynamic NTK scaling may not work well with fine-tuning. " |
|
"See: https://github.com/huggingface/transformers/pull/24653" |
|
) |
|
|
|
current_max_length = getattr(config, "max_position_embeddings", None) |
|
if current_max_length and model_args.model_max_length > current_max_length: |
|
logger.info( |
|
"Enlarge max model length from {} to {}.".format(current_max_length, model_args.model_max_length) |
|
) |
|
setattr(config, "max_position_embeddings", model_args.model_max_length) |
|
scaling_factor = float(math.ceil(model_args.model_max_length / current_max_length)) |
|
else: |
|
logger.warning("Input length is smaller than max length. Consider increase input length.") |
|
scaling_factor = 1.0 |
|
else: |
|
scaling_factor = 2.0 |
|
|
|
setattr(config, "rope_scaling", {"type": model_args.rope_scaling, "factor": scaling_factor}) |
|
logger.info( |
|
"Using {} scaling strategy and setting scaling factor to {}".format(model_args.rope_scaling, scaling_factor) |
|
) |
|
|