|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from contextlib import nullcontext |
|
from typing import TYPE_CHECKING |
|
|
|
import torch |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
|
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _noisy_mean_initialization(embed_weight: "torch.Tensor", num_new_tokens: int) -> None: |
|
embedding_dim = embed_weight.size(1) |
|
avg_weight = embed_weight[:-num_new_tokens].mean(dim=0, keepdim=True) |
|
noise_weight = torch.empty_like(embed_weight[-num_new_tokens:]) |
|
noise_weight.normal_(mean=0, std=(1.0 / math.sqrt(embedding_dim))) |
|
embed_weight[-num_new_tokens:] = avg_weight + noise_weight |
|
|
|
|
|
def resize_embedding_layer(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer") -> None: |
|
r""" |
|
Resize token embeddings. |
|
""" |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
|
|
params = [model.get_input_embeddings().weight] |
|
if model.get_output_embeddings() is not None and not model.config.tie_word_embeddings: |
|
params.append(model.get_output_embeddings().weight) |
|
|
|
context_maybe_zero3 = deepspeed.zero.GatheredParameters(params, modifier_rank=0) |
|
else: |
|
context_maybe_zero3 = nullcontext() |
|
|
|
with context_maybe_zero3: |
|
current_embedding_size = model.get_input_embeddings().weight.size(0) |
|
|
|
if len(tokenizer) > current_embedding_size: |
|
if getattr(model, "quantization_method", None): |
|
raise ValueError("Cannot resize embedding layers of a quantized model.") |
|
|
|
if not isinstance(model.get_output_embeddings(), torch.nn.Linear): |
|
raise ValueError("Current model does not support resizing embedding layers.") |
|
|
|
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64) |
|
with context_maybe_zero3: |
|
new_embedding_size = model.get_input_embeddings().weight.size(0) |
|
num_new_tokens = new_embedding_size - current_embedding_size |
|
_noisy_mean_initialization(model.get_input_embeddings().weight.data, num_new_tokens) |
|
_noisy_mean_initialization(model.get_output_embeddings().weight.data, num_new_tokens) |
|
|
|
logger.info("Resized token embeddings from {} to {}.".format(current_embedding_size, new_embedding_size)) |
|
|