|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
import sys |
|
from typing import Any, Dict, Optional, Tuple |
|
|
|
import torch |
|
import transformers |
|
from transformers import HfArgumentParser, Seq2SeqTrainingArguments |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.training_args import ParallelMode |
|
from transformers.utils import is_torch_bf16_gpu_available |
|
from transformers.utils.versions import require_version |
|
|
|
from ..extras.constants import CHECKPOINT_NAMES |
|
from ..extras.logging import get_logger |
|
from ..extras.misc import check_dependencies, get_current_device |
|
from .data_args import DataArguments |
|
from .evaluation_args import EvaluationArguments |
|
from .finetuning_args import FinetuningArguments |
|
from .generating_args import GeneratingArguments |
|
from .model_args import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
check_dependencies() |
|
|
|
|
|
_TRAIN_ARGS = [ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] |
|
_TRAIN_CLS = Tuple[ModelArguments, DataArguments, Seq2SeqTrainingArguments, FinetuningArguments, GeneratingArguments] |
|
_INFER_ARGS = [ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] |
|
_INFER_CLS = Tuple[ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments] |
|
_EVAL_ARGS = [ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] |
|
_EVAL_CLS = Tuple[ModelArguments, DataArguments, EvaluationArguments, FinetuningArguments] |
|
|
|
|
|
def _parse_args(parser: "HfArgumentParser", args: Optional[Dict[str, Any]] = None) -> Tuple[Any]: |
|
if args is not None: |
|
return parser.parse_dict(args) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".yaml"): |
|
return parser.parse_yaml_file(os.path.abspath(sys.argv[1])) |
|
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
return parser.parse_json_file(os.path.abspath(sys.argv[1])) |
|
|
|
(*parsed_args, unknown_args) = parser.parse_args_into_dataclasses(return_remaining_strings=True) |
|
|
|
if unknown_args: |
|
print(parser.format_help()) |
|
print("Got unknown args, potentially deprecated arguments: {}".format(unknown_args)) |
|
raise ValueError("Some specified arguments are not used by the HfArgumentParser: {}".format(unknown_args)) |
|
|
|
return (*parsed_args,) |
|
|
|
|
|
def _set_transformers_logging(log_level: Optional[int] = logging.INFO) -> None: |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
def _verify_model_args(model_args: "ModelArguments", finetuning_args: "FinetuningArguments") -> None: |
|
if model_args.adapter_name_or_path is not None and finetuning_args.finetuning_type != "lora": |
|
raise ValueError("Adapter is only valid for the LoRA method.") |
|
|
|
if model_args.quantization_bit is not None: |
|
if finetuning_args.finetuning_type != "lora": |
|
raise ValueError("Quantization is only compatible with the LoRA method.") |
|
|
|
if finetuning_args.pissa_init: |
|
raise ValueError("Please use scripts/pissa_init.py to initialize PiSSA for a quantized model.") |
|
|
|
if model_args.resize_vocab: |
|
raise ValueError("Cannot resize embedding layers of a quantized model.") |
|
|
|
if model_args.adapter_name_or_path is not None and finetuning_args.create_new_adapter: |
|
raise ValueError("Cannot create new adapter upon a quantized model.") |
|
|
|
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: |
|
raise ValueError("Quantized model only accepts a single adapter. Merge them first.") |
|
|
|
|
|
def _check_extra_dependencies( |
|
model_args: "ModelArguments", |
|
finetuning_args: "FinetuningArguments", |
|
training_args: Optional["Seq2SeqTrainingArguments"] = None, |
|
) -> None: |
|
if model_args.use_unsloth: |
|
require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth") |
|
|
|
if model_args.mixture_of_depths is not None: |
|
require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6") |
|
|
|
if model_args.infer_backend == "vllm": |
|
require_version("vllm>=0.4.3", "To fix: pip install vllm>=0.4.3") |
|
|
|
if finetuning_args.use_galore: |
|
require_version("galore_torch", "To fix: pip install galore_torch") |
|
|
|
if finetuning_args.use_badam: |
|
require_version("badam>=1.2.1", "To fix: pip install badam>=1.2.1") |
|
|
|
if finetuning_args.plot_loss: |
|
require_version("matplotlib", "To fix: pip install matplotlib") |
|
|
|
if training_args is not None and training_args.predict_with_generate: |
|
require_version("jieba", "To fix: pip install jieba") |
|
require_version("nltk", "To fix: pip install nltk") |
|
require_version("rouge_chinese", "To fix: pip install rouge-chinese") |
|
|
|
|
|
def _parse_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: |
|
parser = HfArgumentParser(_TRAIN_ARGS) |
|
return _parse_args(parser, args) |
|
|
|
|
|
def _parse_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: |
|
parser = HfArgumentParser(_INFER_ARGS) |
|
return _parse_args(parser, args) |
|
|
|
|
|
def _parse_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: |
|
parser = HfArgumentParser(_EVAL_ARGS) |
|
return _parse_args(parser, args) |
|
|
|
|
|
def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS: |
|
model_args, data_args, training_args, finetuning_args, generating_args = _parse_train_args(args) |
|
|
|
|
|
if training_args.should_log: |
|
_set_transformers_logging() |
|
|
|
|
|
if finetuning_args.stage != "pt" and data_args.template is None: |
|
raise ValueError("Please specify which `template` to use.") |
|
|
|
if finetuning_args.stage != "sft" and training_args.predict_with_generate: |
|
raise ValueError("`predict_with_generate` cannot be set as True except SFT.") |
|
|
|
if finetuning_args.stage != "sft" and data_args.neat_packing: |
|
raise ValueError("`neat_packing` cannot be set as True except SFT.") |
|
|
|
if finetuning_args.stage == "sft" and training_args.do_predict and not training_args.predict_with_generate: |
|
raise ValueError("Please enable `predict_with_generate` to save model predictions.") |
|
|
|
if finetuning_args.stage in ["rm", "ppo"] and training_args.load_best_model_at_end: |
|
raise ValueError("RM and PPO stages do not support `load_best_model_at_end`.") |
|
|
|
if finetuning_args.stage == "ppo" and not training_args.do_train: |
|
raise ValueError("PPO training does not support evaluation, use the SFT stage to evaluate models.") |
|
|
|
if finetuning_args.stage == "ppo" and model_args.shift_attn: |
|
raise ValueError("PPO training is incompatible with S^2-Attn.") |
|
|
|
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth: |
|
raise ValueError("Unsloth does not support lora reward model.") |
|
|
|
if ( |
|
finetuning_args.stage == "ppo" |
|
and training_args.report_to |
|
and training_args.report_to[0] not in ["wandb", "tensorboard"] |
|
): |
|
raise ValueError("PPO only accepts wandb or tensorboard logger.") |
|
|
|
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED: |
|
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.") |
|
|
|
if training_args.deepspeed and training_args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise ValueError("Please use `FORCE_TORCHRUN=1` to launch DeepSpeed training.") |
|
|
|
if training_args.max_steps == -1 and data_args.streaming: |
|
raise ValueError("Please specify `max_steps` in streaming mode.") |
|
|
|
if training_args.do_train and training_args.predict_with_generate: |
|
raise ValueError("`predict_with_generate` cannot be set as True while training.") |
|
|
|
if training_args.do_train and model_args.quantization_device_map == "auto": |
|
raise ValueError("Cannot use device map for quantized models in training.") |
|
|
|
if finetuning_args.pissa_init and is_deepspeed_zero3_enabled(): |
|
raise ValueError("PiSSA is incompatible with DeepSpeed ZeRO-3.") |
|
|
|
if finetuning_args.pure_bf16: |
|
if not is_torch_bf16_gpu_available(): |
|
raise ValueError("This device does not support `pure_bf16`.") |
|
|
|
if is_deepspeed_zero3_enabled(): |
|
raise ValueError("`pure_bf16` is incompatible with DeepSpeed ZeRO-3.") |
|
|
|
if ( |
|
finetuning_args.use_galore |
|
and finetuning_args.galore_layerwise |
|
and training_args.parallel_mode == ParallelMode.DISTRIBUTED |
|
): |
|
raise ValueError("Distributed training does not support layer-wise GaLore.") |
|
|
|
if finetuning_args.use_badam and training_args.parallel_mode == ParallelMode.DISTRIBUTED: |
|
if finetuning_args.badam_mode == "ratio": |
|
raise ValueError("Radio-based BAdam does not yet support distributed training, use layer-wise BAdam.") |
|
elif not is_deepspeed_zero3_enabled(): |
|
raise ValueError("Layer-wise BAdam only supports DeepSpeed ZeRO-3 training.") |
|
|
|
if finetuning_args.use_galore and training_args.deepspeed is not None: |
|
raise ValueError("GaLore is incompatible with DeepSpeed yet.") |
|
|
|
if model_args.infer_backend == "vllm": |
|
raise ValueError("vLLM backend is only available for API, CLI and Web.") |
|
|
|
if model_args.visual_inputs and data_args.packing: |
|
raise ValueError("Cannot use packing in MLLM fine-tuning.") |
|
|
|
if model_args.use_unsloth and is_deepspeed_zero3_enabled(): |
|
raise ValueError("Unsloth is incompatible with DeepSpeed ZeRO-3.") |
|
|
|
if data_args.neat_packing and not data_args.packing: |
|
logger.warning("`neat_packing` requires `packing` is True. Change it to True.") |
|
data_args.packing = True |
|
|
|
_verify_model_args(model_args, finetuning_args) |
|
_check_extra_dependencies(model_args, finetuning_args, training_args) |
|
|
|
if ( |
|
training_args.do_train |
|
and finetuning_args.finetuning_type == "lora" |
|
and model_args.quantization_bit is None |
|
and model_args.resize_vocab |
|
and finetuning_args.additional_target is None |
|
): |
|
logger.warning("Remember to add embedding layers to `additional_target` to make the added tokens trainable.") |
|
|
|
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm): |
|
logger.warning("We recommend enable `upcast_layernorm` in quantized training.") |
|
|
|
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): |
|
logger.warning("We recommend enable mixed precision training.") |
|
|
|
if training_args.do_train and finetuning_args.use_galore and not finetuning_args.pure_bf16: |
|
logger.warning("Using GaLore with mixed precision training may significantly increases GPU memory usage.") |
|
|
|
if (not training_args.do_train) and model_args.quantization_bit is not None: |
|
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.") |
|
|
|
if (not training_args.do_train) and finetuning_args.stage == "dpo" and finetuning_args.ref_model is None: |
|
logger.warning("Specify `ref_model` for computing rewards at evaluation.") |
|
|
|
|
|
if ( |
|
training_args.parallel_mode == ParallelMode.DISTRIBUTED |
|
and training_args.ddp_find_unused_parameters is None |
|
and finetuning_args.finetuning_type == "lora" |
|
): |
|
logger.warning("`ddp_find_unused_parameters` needs to be set as False for LoRA in DDP training.") |
|
training_args.ddp_find_unused_parameters = False |
|
|
|
if finetuning_args.stage in ["rm", "ppo"] and finetuning_args.finetuning_type in ["full", "freeze"]: |
|
can_resume_from_checkpoint = False |
|
if training_args.resume_from_checkpoint is not None: |
|
logger.warning("Cannot resume from checkpoint in current stage.") |
|
training_args.resume_from_checkpoint = None |
|
else: |
|
can_resume_from_checkpoint = True |
|
|
|
if ( |
|
training_args.resume_from_checkpoint is None |
|
and training_args.do_train |
|
and os.path.isdir(training_args.output_dir) |
|
and not training_args.overwrite_output_dir |
|
and can_resume_from_checkpoint |
|
): |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and any( |
|
os.path.isfile(os.path.join(training_args.output_dir, name)) for name in CHECKPOINT_NAMES |
|
): |
|
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.") |
|
|
|
if last_checkpoint is not None: |
|
training_args.resume_from_checkpoint = last_checkpoint |
|
logger.info("Resuming training from {}.".format(training_args.resume_from_checkpoint)) |
|
logger.info("Change `output_dir` or use `overwrite_output_dir` to avoid.") |
|
|
|
if ( |
|
finetuning_args.stage in ["rm", "ppo"] |
|
and finetuning_args.finetuning_type == "lora" |
|
and training_args.resume_from_checkpoint is not None |
|
): |
|
logger.warning( |
|
"Add {} to `adapter_name_or_path` to resume training from checkpoint.".format( |
|
training_args.resume_from_checkpoint |
|
) |
|
) |
|
|
|
|
|
if training_args.bf16 or finetuning_args.pure_bf16: |
|
model_args.compute_dtype = torch.bfloat16 |
|
elif training_args.fp16: |
|
model_args.compute_dtype = torch.float16 |
|
|
|
model_args.device_map = {"": get_current_device()} |
|
model_args.model_max_length = data_args.cutoff_len |
|
model_args.block_diag_attn = data_args.neat_packing |
|
data_args.packing = data_args.packing if data_args.packing is not None else finetuning_args.stage == "pt" |
|
|
|
|
|
logger.info( |
|
"Process rank: {}, device: {}, n_gpu: {}, distributed training: {}, compute dtype: {}".format( |
|
training_args.local_rank, |
|
training_args.device, |
|
training_args.n_gpu, |
|
training_args.parallel_mode == ParallelMode.DISTRIBUTED, |
|
str(model_args.compute_dtype), |
|
) |
|
) |
|
|
|
transformers.set_seed(training_args.seed) |
|
|
|
return model_args, data_args, training_args, finetuning_args, generating_args |
|
|
|
|
|
def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS: |
|
model_args, data_args, finetuning_args, generating_args = _parse_infer_args(args) |
|
|
|
_set_transformers_logging() |
|
|
|
if data_args.template is None: |
|
raise ValueError("Please specify which `template` to use.") |
|
|
|
if model_args.infer_backend == "vllm": |
|
if finetuning_args.stage != "sft": |
|
raise ValueError("vLLM engine only supports auto-regressive models.") |
|
|
|
if model_args.quantization_bit is not None: |
|
raise ValueError("vLLM engine does not support bnb quantization (GPTQ and AWQ are supported).") |
|
|
|
if model_args.rope_scaling is not None: |
|
raise ValueError("vLLM engine does not support RoPE scaling.") |
|
|
|
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1: |
|
raise ValueError("vLLM only accepts a single adapter. Merge them first.") |
|
|
|
if finetuning_args.stage == "rm" and model_args.visual_inputs: |
|
raise ValueError("Reward server does not support MLLM yet. Stay tuned.") |
|
|
|
_verify_model_args(model_args, finetuning_args) |
|
_check_extra_dependencies(model_args, finetuning_args) |
|
|
|
if model_args.export_dir is not None and model_args.export_device == "cpu": |
|
model_args.device_map = {"": torch.device("cpu")} |
|
model_args.model_max_length = data_args.cutoff_len |
|
else: |
|
model_args.device_map = "auto" |
|
|
|
return model_args, data_args, finetuning_args, generating_args |
|
|
|
|
|
def get_eval_args(args: Optional[Dict[str, Any]] = None) -> _EVAL_CLS: |
|
model_args, data_args, eval_args, finetuning_args = _parse_eval_args(args) |
|
|
|
_set_transformers_logging() |
|
|
|
if data_args.template is None: |
|
raise ValueError("Please specify which `template` to use.") |
|
|
|
if model_args.infer_backend == "vllm": |
|
raise ValueError("vLLM backend is only available for API, CLI and Web.") |
|
|
|
_verify_model_args(model_args, finetuning_args) |
|
_check_extra_dependencies(model_args, finetuning_args) |
|
|
|
model_args.device_map = "auto" |
|
|
|
transformers.set_seed(eval_args.seed) |
|
|
|
return model_args, data_args, eval_args, finetuning_args |
|
|