|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import List, Literal, Optional |
|
|
|
|
|
@dataclass |
|
class FreezeArguments: |
|
r""" |
|
Arguments pertaining to the freeze (partial-parameter) training. |
|
""" |
|
|
|
freeze_trainable_layers: int = field( |
|
default=2, |
|
metadata={ |
|
"help": ( |
|
"The number of trainable layers for freeze (partial-parameter) fine-tuning. " |
|
"Positive numbers mean the last n layers are set as trainable, " |
|
"negative numbers mean the first n layers are set as trainable." |
|
) |
|
}, |
|
) |
|
freeze_trainable_modules: str = field( |
|
default="all", |
|
metadata={ |
|
"help": ( |
|
"Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. " |
|
"Use commas to separate multiple modules. " |
|
"Use `all` to specify all the available modules." |
|
) |
|
}, |
|
) |
|
freeze_extra_modules: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Name(s) of modules apart from hidden layers to be set as trainable " |
|
"for freeze (partial-parameter) fine-tuning. " |
|
"Use commas to separate multiple modules." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class LoraArguments: |
|
r""" |
|
Arguments pertaining to the LoRA training. |
|
""" |
|
|
|
additional_target: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Name(s) of modules apart from LoRA layers to be set as trainable " |
|
"and saved in the final checkpoint. " |
|
"Use commas to separate multiple modules." |
|
) |
|
}, |
|
) |
|
lora_alpha: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The scale factor for LoRA fine-tuning (default: lora_rank * 2)."}, |
|
) |
|
lora_dropout: float = field( |
|
default=0.0, |
|
metadata={"help": "Dropout rate for the LoRA fine-tuning."}, |
|
) |
|
lora_rank: int = field( |
|
default=8, |
|
metadata={"help": "The intrinsic dimension for LoRA fine-tuning."}, |
|
) |
|
lora_target: str = field( |
|
default="all", |
|
metadata={ |
|
"help": ( |
|
"Name(s) of target modules to apply LoRA. " |
|
"Use commas to separate multiple modules. " |
|
"Use `all` to specify all the linear modules." |
|
) |
|
}, |
|
) |
|
loraplus_lr_ratio: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "LoRA plus learning rate ratio (lr_B / lr_A)."}, |
|
) |
|
loraplus_lr_embedding: float = field( |
|
default=1e-6, |
|
metadata={"help": "LoRA plus learning rate for lora embedding layers."}, |
|
) |
|
use_rslora: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use the rank stabilization scaling factor for LoRA layer."}, |
|
) |
|
use_dora: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."}, |
|
) |
|
pissa_init: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to initialize a PiSSA adapter."}, |
|
) |
|
pissa_iter: int = field( |
|
default=16, |
|
metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."}, |
|
) |
|
pissa_convert: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."}, |
|
) |
|
create_new_adapter: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class RLHFArguments: |
|
r""" |
|
Arguments pertaining to the PPO, DPO and KTO training. |
|
""" |
|
|
|
pref_beta: float = field( |
|
default=0.1, |
|
metadata={"help": "The beta parameter in the preference loss."}, |
|
) |
|
pref_ftx: float = field( |
|
default=0.0, |
|
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."}, |
|
) |
|
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field( |
|
default="sigmoid", |
|
metadata={"help": "The type of DPO loss to use."}, |
|
) |
|
dpo_label_smoothing: float = field( |
|
default=0.0, |
|
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."}, |
|
) |
|
kto_chosen_weight: float = field( |
|
default=1.0, |
|
metadata={"help": "The weight factor of the desirable losses in KTO training."}, |
|
) |
|
kto_rejected_weight: float = field( |
|
default=1.0, |
|
metadata={"help": "The weight factor of the undesirable losses in KTO training."}, |
|
) |
|
simpo_gamma: float = field( |
|
default=0.5, |
|
metadata={"help": "The target reward margin term in SimPO loss."}, |
|
) |
|
ppo_buffer_size: int = field( |
|
default=1, |
|
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."}, |
|
) |
|
ppo_epochs: int = field( |
|
default=4, |
|
metadata={"help": "The number of epochs to perform in a PPO optimization step."}, |
|
) |
|
ppo_score_norm: bool = field( |
|
default=False, |
|
metadata={"help": "Use score normalization in PPO training."}, |
|
) |
|
ppo_target: float = field( |
|
default=6.0, |
|
metadata={"help": "Target KL value for adaptive KL control in PPO training."}, |
|
) |
|
ppo_whiten_rewards: bool = field( |
|
default=False, |
|
metadata={"help": "Whiten the rewards before compute advantages in PPO training."}, |
|
) |
|
ref_model: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the reference model used for the PPO or DPO training."}, |
|
) |
|
ref_model_adapters: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the adapters of the reference model."}, |
|
) |
|
ref_model_quantization_bit: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of bits to quantize the reference model."}, |
|
) |
|
reward_model: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the reward model used for the PPO training."}, |
|
) |
|
reward_model_adapters: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Path to the adapters of the reward model."}, |
|
) |
|
reward_model_quantization_bit: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of bits to quantize the reward model."}, |
|
) |
|
reward_model_type: Literal["lora", "full", "api"] = field( |
|
default="lora", |
|
metadata={"help": "The type of the reward model in PPO training. Lora model only supports lora training."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class GaloreArguments: |
|
r""" |
|
Arguments pertaining to the GaLore algorithm. |
|
""" |
|
|
|
use_galore: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use the gradient low-Rank projection (GaLore)."}, |
|
) |
|
galore_target: str = field( |
|
default="all", |
|
metadata={ |
|
"help": ( |
|
"Name(s) of modules to apply GaLore. Use commas to separate multiple modules. " |
|
"Use `all` to specify all the linear modules." |
|
) |
|
}, |
|
) |
|
galore_rank: int = field( |
|
default=16, |
|
metadata={"help": "The rank of GaLore gradients."}, |
|
) |
|
galore_update_interval: int = field( |
|
default=200, |
|
metadata={"help": "Number of steps to update the GaLore projection."}, |
|
) |
|
galore_scale: float = field( |
|
default=0.25, |
|
metadata={"help": "GaLore scaling coefficient."}, |
|
) |
|
galore_proj_type: Literal["std", "reverse_std", "right", "left", "full"] = field( |
|
default="std", |
|
metadata={"help": "Type of GaLore projection."}, |
|
) |
|
galore_layerwise: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to enable layer-wise update to further save memory."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class BAdamArgument: |
|
r""" |
|
Arguments pertaining to the BAdam optimizer. |
|
""" |
|
|
|
use_badam: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to use the BAdam optimizer."}, |
|
) |
|
badam_mode: Literal["layer", "ratio"] = field( |
|
default="layer", |
|
metadata={"help": "Whether to use layer-wise or ratio-wise BAdam optimizer."}, |
|
) |
|
badam_start_block: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The starting block index for layer-wise BAdam."}, |
|
) |
|
badam_switch_mode: Optional[Literal["ascending", "descending", "random", "fixed"]] = field( |
|
default="ascending", |
|
metadata={"help": "the strategy of picking block to update for layer-wise BAdam."}, |
|
) |
|
badam_switch_interval: Optional[int] = field( |
|
default=50, |
|
metadata={ |
|
"help": "Number of steps to update the block for layer-wise BAdam. Use -1 to disable the block update." |
|
}, |
|
) |
|
badam_update_ratio: float = field( |
|
default=0.05, |
|
metadata={"help": "The ratio of the update for ratio-wise BAdam."}, |
|
) |
|
badam_mask_mode: Literal["adjacent", "scatter"] = field( |
|
default="adjacent", |
|
metadata={ |
|
"help": ( |
|
"The mode of the mask for BAdam optimizer. " |
|
"`adjacent` means that the trainable parameters are adjacent to each other, " |
|
"`scatter` means that trainable parameters are randomly choosed from the weight." |
|
) |
|
}, |
|
) |
|
badam_verbose: int = field( |
|
default=0, |
|
metadata={ |
|
"help": ( |
|
"The verbosity level of BAdam optimizer. " |
|
"0 for no print, 1 for print the block prefix, 2 for print trainable parameters." |
|
) |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreArguments, BAdamArgument): |
|
r""" |
|
Arguments pertaining to which techniques we are going to fine-tuning with. |
|
""" |
|
|
|
pure_bf16: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."}, |
|
) |
|
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field( |
|
default="sft", |
|
metadata={"help": "Which stage will be performed in training."}, |
|
) |
|
finetuning_type: Literal["lora", "freeze", "full"] = field( |
|
default="lora", |
|
metadata={"help": "Which fine-tuning method to use."}, |
|
) |
|
use_llama_pro: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."}, |
|
) |
|
freeze_vision_tower: bool = field( |
|
default=True, |
|
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."}, |
|
) |
|
train_mm_proj_only: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."}, |
|
) |
|
plot_loss: bool = field( |
|
default=False, |
|
metadata={"help": "Whether or not to save the training loss curves."}, |
|
) |
|
|
|
def __post_init__(self): |
|
def split_arg(arg): |
|
if isinstance(arg, str): |
|
return [item.strip() for item in arg.split(",")] |
|
return arg |
|
|
|
self.freeze_trainable_modules: List[str] = split_arg(self.freeze_trainable_modules) |
|
self.freeze_extra_modules: Optional[List[str]] = split_arg(self.freeze_extra_modules) |
|
self.lora_alpha: int = self.lora_alpha or self.lora_rank * 2 |
|
self.lora_target: List[str] = split_arg(self.lora_target) |
|
self.additional_target: Optional[List[str]] = split_arg(self.additional_target) |
|
self.galore_target: List[str] = split_arg(self.galore_target) |
|
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only |
|
self.use_ref_model = self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"] |
|
|
|
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method." |
|
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." |
|
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." |
|
|
|
if self.stage == "ppo" and self.reward_model is None: |
|
raise ValueError("`reward_model` is necessary for PPO training.") |
|
|
|
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora": |
|
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.") |
|
|
|
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6: |
|
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.") |
|
|
|
if self.use_llama_pro and self.finetuning_type == "full": |
|
raise ValueError("`use_llama_pro` is only valid for Freeze or LoRA training.") |
|
|
|
if self.finetuning_type == "lora" and (self.use_galore or self.use_badam): |
|
raise ValueError("Cannot use LoRA with GaLore or BAdam together.") |
|
|
|
if self.use_galore and self.use_badam: |
|
raise ValueError("Cannot use GaLore with BAdam together.") |
|
|
|
if self.pissa_init and (self.stage in ["ppo", "kto"] or self.use_ref_model): |
|
raise ValueError("Cannot use PiSSA for current training stage.") |
|
|
|
if self.train_mm_proj_only and self.finetuning_type != "full": |
|
raise ValueError("`train_mm_proj_only` is only valid for full training.") |
|
|
|
if self.finetuning_type != "lora": |
|
if self.loraplus_lr_ratio is not None: |
|
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.") |
|
|
|
if self.use_rslora: |
|
raise ValueError("`use_rslora` is only valid for LoRA training.") |
|
|
|
if self.use_dora: |
|
raise ValueError("`use_dora` is only valid for LoRA training.") |
|
|
|
if self.pissa_init: |
|
raise ValueError("`pissa_init` is only valid for LoRA training.") |
|
|