|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple |
|
|
|
from ...extras.logging import get_logger |
|
from ..data_utils import Role |
|
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, infer_seqlen |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedTokenizer, ProcessorMixin |
|
|
|
from ...hparams import DataArguments |
|
from ..template import Template |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _encode_unsupervised_example( |
|
prompt: Sequence[Dict[str, str]], |
|
response: Sequence[Dict[str, str]], |
|
system: Optional[str], |
|
tools: Optional[str], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Tuple[List[int], List[int]]: |
|
if processor is not None and not hasattr(processor, "image_seq_length"): |
|
prompt[0]["content"] = template.image_token + prompt[0]["content"] |
|
|
|
if len(response) == 1: |
|
messages = prompt + response |
|
else: |
|
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}] |
|
|
|
input_ids, labels = template.encode_oneturn(tokenizer, messages, system, tools) |
|
if template.efficient_eos: |
|
labels += [tokenizer.eos_token_id] |
|
|
|
if processor is not None and hasattr(processor, "image_seq_length"): |
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) |
|
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids |
|
|
|
source_len, target_len = infer_seqlen(len(input_ids), len(labels), data_args.cutoff_len) |
|
input_ids = input_ids[:source_len] |
|
labels = labels[:target_len] |
|
return input_ids, labels |
|
|
|
|
|
def preprocess_unsupervised_dataset( |
|
examples: Dict[str, List[Any]], |
|
template: "Template", |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"], |
|
data_args: "DataArguments", |
|
) -> Dict[str, List[List[int]]]: |
|
|
|
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} |
|
if processor is not None: |
|
model_inputs["pixel_values"] = [] |
|
if hasattr(processor, "image_seq_length"): |
|
model_inputs["token_type_ids"] = [] |
|
|
|
for i in range(len(examples["prompt"])): |
|
if len(examples["prompt"][i]) % 2 != 1: |
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) |
|
continue |
|
|
|
input_ids, labels = _encode_unsupervised_example( |
|
prompt=examples["prompt"][i], |
|
response=examples["response"][i], |
|
system=examples["system"][i], |
|
tools=examples["tools"][i], |
|
template=template, |
|
tokenizer=tokenizer, |
|
processor=processor, |
|
data_args=data_args, |
|
) |
|
model_inputs["input_ids"].append(input_ids) |
|
model_inputs["attention_mask"].append([1] * len(input_ids)) |
|
model_inputs["labels"].append(labels) |
|
if processor is not None: |
|
model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) |
|
if hasattr(processor, "image_seq_length"): |
|
model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) |
|
|
|
return model_inputs |
|
|
|
|
|
def print_unsupervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: |
|
print("input_ids:\n{}".format(example["input_ids"])) |
|
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) |
|
|