|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import sys |
|
from typing import TYPE_CHECKING, Literal, Optional, Union |
|
|
|
import numpy as np |
|
from datasets import load_dataset, load_from_disk |
|
|
|
from ..extras.constants import FILEEXT2TYPE |
|
from ..extras.logging import get_logger |
|
from ..extras.misc import has_tokenized_data |
|
from .aligner import align_dataset |
|
from .data_utils import merge_dataset |
|
from .parser import get_dataset_list |
|
from .preprocess import get_preprocess_and_print_func |
|
from .template import get_template_and_fix_tokenizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from datasets import Dataset, IterableDataset |
|
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments |
|
|
|
from ..hparams import DataArguments, ModelArguments |
|
from .parser import DatasetAttr |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def load_single_dataset( |
|
dataset_attr: "DatasetAttr", |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
) -> Union["Dataset", "IterableDataset"]: |
|
logger.info("Loading dataset {}...".format(dataset_attr)) |
|
data_path, data_name, data_dir, data_files = None, None, None, None |
|
if dataset_attr.load_from in ["hf_hub", "ms_hub"]: |
|
data_path = dataset_attr.dataset_name |
|
data_name = dataset_attr.subset |
|
data_dir = dataset_attr.folder |
|
|
|
elif dataset_attr.load_from == "script": |
|
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) |
|
data_name = dataset_attr.subset |
|
data_dir = dataset_attr.folder |
|
|
|
elif dataset_attr.load_from == "file": |
|
data_files = [] |
|
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) |
|
if os.path.isdir(local_path): |
|
for file_name in os.listdir(local_path): |
|
data_files.append(os.path.join(local_path, file_name)) |
|
if data_path is None: |
|
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) |
|
elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): |
|
raise ValueError("File types should be identical.") |
|
elif os.path.isfile(local_path): |
|
data_files.append(local_path) |
|
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) |
|
else: |
|
raise ValueError("File {} not found.".format(local_path)) |
|
|
|
if data_path is None: |
|
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys()))) |
|
else: |
|
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from)) |
|
|
|
if dataset_attr.load_from == "ms_hub": |
|
try: |
|
from modelscope import MsDataset |
|
from modelscope.utils.config_ds import MS_DATASETS_CACHE |
|
|
|
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE |
|
dataset = MsDataset.load( |
|
dataset_name=data_path, |
|
subset_name=data_name, |
|
data_dir=data_dir, |
|
data_files=data_files, |
|
split=data_args.split, |
|
cache_dir=cache_dir, |
|
token=model_args.ms_hub_token, |
|
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), |
|
) |
|
if isinstance(dataset, MsDataset): |
|
dataset = dataset.to_hf_dataset() |
|
except ImportError: |
|
raise ImportError("Please install modelscope via `pip install modelscope -U`") |
|
else: |
|
if "trust_remote_code" in inspect.signature(load_dataset).parameters: |
|
kwargs = {"trust_remote_code": True} |
|
else: |
|
kwargs = {} |
|
|
|
dataset = load_dataset( |
|
path=data_path, |
|
name=data_name, |
|
data_dir=data_dir, |
|
data_files=data_files, |
|
split=data_args.split, |
|
cache_dir=model_args.cache_dir, |
|
token=model_args.hf_hub_token, |
|
streaming=(data_args.streaming and (dataset_attr.load_from != "file")), |
|
**kwargs, |
|
) |
|
|
|
if data_args.streaming and (dataset_attr.load_from == "file"): |
|
dataset = dataset.to_iterable_dataset() |
|
|
|
if dataset_attr.num_samples is not None and not data_args.streaming: |
|
target_num = dataset_attr.num_samples |
|
indexes = np.random.permutation(len(dataset))[:target_num] |
|
target_num -= len(indexes) |
|
if target_num > 0: |
|
expand_indexes = np.random.choice(len(dataset), target_num) |
|
indexes = np.concatenate((indexes, expand_indexes), axis=0) |
|
|
|
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched." |
|
dataset = dataset.select(indexes) |
|
logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr)) |
|
|
|
if data_args.max_samples is not None: |
|
max_samples = min(data_args.max_samples, len(dataset)) |
|
dataset = dataset.select(range(max_samples)) |
|
|
|
return align_dataset(dataset, dataset_attr, data_args, training_args) |
|
|
|
|
|
def get_dataset( |
|
model_args: "ModelArguments", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
stage: Literal["pt", "sft", "rm", "ppo", "kto"], |
|
tokenizer: "PreTrainedTokenizer", |
|
processor: Optional["ProcessorMixin"] = None, |
|
) -> Union["Dataset", "IterableDataset"]: |
|
template = get_template_and_fix_tokenizer(tokenizer, data_args.template, data_args.tool_format) |
|
if data_args.train_on_prompt and template.efficient_eos: |
|
raise ValueError("Current template does not support `train_on_prompt`.") |
|
|
|
|
|
if data_args.tokenized_path is not None: |
|
if has_tokenized_data(data_args.tokenized_path): |
|
logger.warning("Loading dataset from disk will ignore other data arguments.") |
|
dataset = load_from_disk(data_args.tokenized_path) |
|
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path)) |
|
if data_args.streaming: |
|
dataset = dataset.to_iterable_dataset() |
|
return dataset |
|
|
|
if data_args.streaming: |
|
raise ValueError("Turn off `streaming` when saving dataset to disk.") |
|
|
|
with training_args.main_process_first(desc="load dataset"): |
|
all_datasets = [] |
|
for dataset_attr in get_dataset_list(data_args): |
|
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True): |
|
raise ValueError("The dataset is not applicable in the current training stage.") |
|
|
|
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args, training_args)) |
|
|
|
dataset = merge_dataset(all_datasets, data_args, training_args) |
|
|
|
with training_args.main_process_first(desc="pre-process dataset"): |
|
preprocess_func, print_function = get_preprocess_and_print_func( |
|
data_args, training_args, stage, template, tokenizer, processor |
|
) |
|
column_names = list(next(iter(dataset)).keys()) |
|
kwargs = {} |
|
if not data_args.streaming: |
|
kwargs = dict( |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), |
|
desc="Running tokenizer on dataset", |
|
) |
|
|
|
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs) |
|
|
|
if data_args.tokenized_path is not None: |
|
if training_args.should_save: |
|
dataset.save_to_disk(data_args.tokenized_path) |
|
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path)) |
|
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path)) |
|
|
|
sys.exit(0) |
|
|
|
if training_args.should_log: |
|
try: |
|
print_function(next(iter(dataset))) |
|
except StopIteration: |
|
if stage == "pt": |
|
raise RuntimeError("Cannot find sufficient samples, consider increasing dataset size.") |
|
else: |
|
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.") |
|
|
|
return dataset |
|
|