|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from functools import partial |
|
from typing import TYPE_CHECKING, Any, Dict, List, Union |
|
|
|
from datasets import Features |
|
|
|
from ..extras.logging import get_logger |
|
from .data_utils import Role |
|
|
|
|
|
if TYPE_CHECKING: |
|
from datasets import Dataset, IterableDataset |
|
from transformers import Seq2SeqTrainingArguments |
|
|
|
from ..hparams import DataArguments |
|
from .parser import DatasetAttr |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def _convert_images(images: List[Any], dataset_attr: "DatasetAttr", data_args: "DataArguments") -> List[Any]: |
|
r""" |
|
Optionally concatenates image path to dataset dir when loading from local disk. |
|
""" |
|
outputs = [] |
|
if dataset_attr.load_from in ["script", "file"]: |
|
for image in images: |
|
if isinstance(image, str) and os.path.isfile(os.path.join(data_args.dataset_dir, image)): |
|
outputs.append(os.path.join(data_args.dataset_dir, image)) |
|
else: |
|
outputs.append(image) |
|
|
|
return outputs |
|
|
|
|
|
def convert_alpaca( |
|
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments" |
|
) -> Dict[str, List[Any]]: |
|
r""" |
|
Converts alpaca format dataset to the standard format. |
|
""" |
|
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []} |
|
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args) |
|
for i in range(len(examples[dataset_attr.prompt])): |
|
prompt = [] |
|
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list): |
|
for old_prompt, old_response in examples[dataset_attr.history][i]: |
|
prompt.append({"role": Role.USER.value, "content": old_prompt}) |
|
prompt.append({"role": Role.ASSISTANT.value, "content": old_response}) |
|
|
|
content = [] |
|
if dataset_attr.prompt and examples[dataset_attr.prompt][i]: |
|
content.append(examples[dataset_attr.prompt][i]) |
|
|
|
if dataset_attr.query and examples[dataset_attr.query][i]: |
|
content.append(examples[dataset_attr.query][i]) |
|
|
|
prompt.append({"role": Role.USER.value, "content": "\n".join(content)}) |
|
|
|
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): |
|
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}] |
|
if examples[dataset_attr.kto_tag][i]: |
|
response = response + [{"role": Role.ASSISTANT.value, "content": ""}] |
|
else: |
|
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response |
|
elif ( |
|
dataset_attr.ranking |
|
and isinstance(examples[dataset_attr.chosen][i], str) |
|
and isinstance(examples[dataset_attr.rejected][i], str) |
|
): |
|
response = [ |
|
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.chosen][i]}, |
|
{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.rejected][i]}, |
|
] |
|
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str): |
|
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}] |
|
else: |
|
response = [] |
|
|
|
outputs["prompt"].append(prompt) |
|
outputs["response"].append(response) |
|
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "") |
|
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "") |
|
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else []) |
|
|
|
return outputs |
|
|
|
|
|
def convert_sharegpt( |
|
examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr", data_args: "DataArguments" |
|
) -> Dict[str, List[Any]]: |
|
r""" |
|
Converts sharegpt format dataset to the standard format. |
|
""" |
|
outputs = {"prompt": [], "response": [], "system": [], "tools": [], "images": []} |
|
convert_images = partial(_convert_images, dataset_attr=dataset_attr, data_args=data_args) |
|
tag_mapping = { |
|
dataset_attr.user_tag: Role.USER.value, |
|
dataset_attr.assistant_tag: Role.ASSISTANT.value, |
|
dataset_attr.observation_tag: Role.OBSERVATION.value, |
|
dataset_attr.function_tag: Role.FUNCTION.value, |
|
dataset_attr.system_tag: Role.SYSTEM.value, |
|
} |
|
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag) |
|
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag) |
|
accept_tags = (odd_tags, even_tags) |
|
for i, messages in enumerate(examples[dataset_attr.messages]): |
|
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag: |
|
system = messages[0][dataset_attr.content_tag] |
|
messages = messages[1:] |
|
else: |
|
system = examples[dataset_attr.system][i] if dataset_attr.system else "" |
|
|
|
if len(messages) == 0: |
|
continue |
|
|
|
aligned_messages = [] |
|
broken_data = False |
|
for turn_idx, message in enumerate(messages): |
|
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]: |
|
logger.warning("Invalid role tag in {}.".format(messages)) |
|
broken_data = True |
|
|
|
aligned_messages.append( |
|
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]} |
|
) |
|
|
|
if (not dataset_attr.ranking and len(aligned_messages) % 2 != 0) or ( |
|
dataset_attr.ranking and len(aligned_messages) % 2 == 0 |
|
): |
|
logger.warning("Invalid message count in {}.".format(messages)) |
|
broken_data = True |
|
|
|
if dataset_attr.kto_tag and isinstance(examples[dataset_attr.kto_tag][i], bool): |
|
prompt = aligned_messages[:-1] |
|
response = aligned_messages[-1:] |
|
if examples[dataset_attr.kto_tag][i]: |
|
response = response + [{"role": Role.ASSISTANT.value, "content": ""}] |
|
else: |
|
response = [{"role": Role.ASSISTANT.value, "content": ""}] + response |
|
elif ( |
|
dataset_attr.ranking |
|
and isinstance(examples[dataset_attr.chosen][i], dict) |
|
and isinstance(examples[dataset_attr.rejected][i], dict) |
|
): |
|
chosen = examples[dataset_attr.chosen][i] |
|
rejected = examples[dataset_attr.rejected][i] |
|
if ( |
|
chosen[dataset_attr.role_tag] not in accept_tags[-1] |
|
or rejected[dataset_attr.role_tag] not in accept_tags[-1] |
|
): |
|
logger.warning("Invalid role tag in {}.".format([chosen, rejected])) |
|
broken_data = True |
|
|
|
prompt = aligned_messages |
|
response = [ |
|
{"role": tag_mapping[chosen[dataset_attr.role_tag]], "content": chosen[dataset_attr.content_tag]}, |
|
{"role": tag_mapping[rejected[dataset_attr.role_tag]], "content": rejected[dataset_attr.content_tag]}, |
|
] |
|
else: |
|
prompt = aligned_messages[:-1] |
|
response = aligned_messages[-1:] |
|
|
|
if broken_data: |
|
logger.warning("Skipping this abnormal example.") |
|
continue |
|
|
|
outputs["prompt"].append(prompt) |
|
outputs["response"].append(response) |
|
outputs["system"].append(system) |
|
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "") |
|
outputs["images"].append(convert_images(examples[dataset_attr.images][i]) if dataset_attr.images else []) |
|
|
|
return outputs |
|
|
|
|
|
def align_dataset( |
|
dataset: Union["Dataset", "IterableDataset"], |
|
dataset_attr: "DatasetAttr", |
|
data_args: "DataArguments", |
|
training_args: "Seq2SeqTrainingArguments", |
|
) -> Union["Dataset", "IterableDataset"]: |
|
r""" |
|
Aligned dataset: |
|
prompt: [{"role": "user", "content": "..."}] * (2T - 1) |
|
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset) |
|
system: "..." |
|
tools: "...", |
|
images: [], |
|
""" |
|
if dataset_attr.formatting == "alpaca": |
|
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr, data_args=data_args) |
|
else: |
|
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr, data_args=data_args) |
|
|
|
column_names = list(next(iter(dataset)).keys()) |
|
features = Features.from_dict( |
|
{ |
|
"prompt": [ |
|
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}} |
|
], |
|
"response": [ |
|
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}} |
|
], |
|
"system": {"dtype": "string", "_type": "Value"}, |
|
"tools": {"dtype": "string", "_type": "Value"}, |
|
"images": [{"_type": "Image"}], |
|
} |
|
) |
|
kwargs = {} |
|
if not data_args.streaming: |
|
kwargs = dict( |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0), |
|
desc="Converting format of dataset", |
|
) |
|
|
|
return dataset.map( |
|
convert_func, |
|
batched=True, |
|
remove_columns=column_names, |
|
features=features, |
|
**kwargs, |
|
) |
|
|