# coding=utf-8 | |
# Copyright 2024 Microsoft Corporation and the LlamaFactory team. | |
# | |
# This code is inspired by the Microsoft's DeepSpeed library. | |
# https://www.deepspeed.ai/tutorials/flops-profiler/ | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import fire | |
import torch | |
from deepspeed.accelerator import get_accelerator # type: ignore | |
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore | |
from llamafactory.chat import ChatModel | |
def calculate_flops( | |
model_name_or_path: str, | |
batch_size: int = 1, | |
seq_length: int = 256, | |
flash_attn: str = "auto", | |
): | |
r""" | |
Calculates the flops of pre-trained models. | |
Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 | |
""" | |
with get_accelerator().device(0): | |
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn)) | |
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device) | |
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()} | |
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True) | |
print("FLOPs:", flops) | |
print("MACs:", macs) | |
print("Params:", params) | |
if __name__ == "__main__": | |
fire.Fire(calculate_flops) | |