File size: 44,093 Bytes
2b915e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
![# LLaMA Factory](assets/logo.png)

[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
[![Citation](https://img.shields.io/badge/citation-72-green)](#使用了-llama-factory-的项目)
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)

[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)

👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。

\[ [English](README.md) | 中文 \]

**微调大模型可以像这样轻松…**

https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd-d76c6d0a6594

选择你的打开方式:

- **Colab**:https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **本地机器**:请见[如何使用](#如何使用)

## 目录

- [项目特色](#项目特色)
- [性能指标](#性能指标)
- [更新日志](#更新日志)
- [模型](#模型)
- [训练方法](#训练方法)
- [数据集](#数据集)
- [软硬件依赖](#软硬件依赖)
- [如何使用](#如何使用)
- [使用了 LLaMA Factory 的项目](#使用了-llama-factory-的项目)
- [协议](#协议)
- [引用](#引用)
- [致谢](#致谢)

## 项目特色

- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**:LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。

## 性能指标

与 ChatGLM 官方的 [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning) 微调相比,LLaMA Factory 的 LoRA 微调提供了 **3.7 倍**的加速比,同时在广告文案生成任务上取得了更高的 Rouge 分数。结合 4 比特量化技术,LLaMA Factory 的 QLoRA 微调进一步降低了 GPU 显存消耗。

![benchmark](assets/benchmark.svg)

<details><summary>变量定义</summary>

- **Training Speed**: 训练阶段每秒处理的样本数量。(批处理大小=4,截断长度=1024)
- **Rouge Score**: [广告文案生成](https://aclanthology.org/D19-1321.pdf)任务验证集上的 Rouge-2 分数。(批处理大小=4,截断长度=1024)
- **GPU Memory**: 4 比特量化训练的 GPU 显存峰值。(批处理大小=1,截断长度=1024)
- 我们在 ChatGLM 的 P-Tuning 中采用 `pre_seq_len=128`,在 LLaMA Factory 的 LoRA 微调中采用 `lora_rank=32`。

</details>

## 更新日志

[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。

[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)****[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。

[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。

<details><summary>展开日志</summary>

[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。

[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。

[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。

[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。

[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。

[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。

[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。

[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练(24GB 可训练 Llama-2-7B-56k)。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。

[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 [examples](examples/README_zh.md)。

[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!

[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 [examples](examples/README_zh.md)。

[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)。

[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)。

[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。

[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `use_dora: true` 参数进行 DoRA 微调。

[24/02/15] 我们支持了 [LLaMA Pro](https://github.com/TencentARC/LLaMA-Pro) 提出的**块扩展**方法。详细用法请参照 [examples](examples/README_zh.md)。

[24/02/05] Qwen1.5(Qwen2 测试版)系列模型已在 LLaMA-Factory 中实现微调支持。详情请查阅该[博客页面](https://qwenlm.github.io/zh/blog/qwen1.5/)。

[24/01/18] 我们针对绝大多数模型实现了 **Agent 微调**,微调时指定 `dataset: glaive_toolcall_zh` 即可使模型获得工具调用能力。

[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `use_unsloth: true` 参数启用 unsloth 优化。该方法可提供 **170%** 的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。

[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。

[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型和数据集。详细用法请参照 [此教程](#从魔搭社区下载)。

[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `neftune_noise_alpha: 5` 参数启用 NEFTune。

[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `shift_attn: true` 参数以启用该功能。

[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。详细用法请参照 [examples](examples/README_zh.md)。

[23/09/10] 我们支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `flash_attn: fa2` 参数以启用 FlashAttention-2。

[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `rope_scaling: linear` 参数训练模型或使用 `rope_scaling: dynamic` 参数评估模型。

[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详细用法请参照 [examples](examples/README_zh.md)。

[23/07/31] 我们支持了**数据流式加载**。请使用 `streaming: true``max_steps: 10000` 参数来流式加载数据集。

[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。

[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。

[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。

[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)。

[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。

[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。详细用法请参照 [examples](examples/README_zh.md)。

</details>

## 模型

| 模型名                                                       | 模型大小                          | Template  |
| ------------------------------------------------------------ | -------------------------------- | --------- |
| [Baichuan 2](https://huggingface.co/baichuan-inc)            | 7B/13B                           | baichuan2 |
| [BLOOM/BLOOMZ](https://huggingface.co/bigscience)            | 560M/1.1B/1.7B/3B/7.1B/176B      | -         |
| [ChatGLM3](https://huggingface.co/THUDM)                     | 6B                               | chatglm3  |
| [Command R](https://huggingface.co/CohereForAI)              | 35B/104B                         | cohere    |
| [DeepSeek (Code/MoE)](https://huggingface.co/deepseek-ai)    | 7B/16B/67B/236B                  | deepseek  |
| [Falcon](https://huggingface.co/tiiuae)                      | 7B/11B/40B/180B                  | falcon    |
| [Gemma/Gemma 2/CodeGemma](https://huggingface.co/google)     | 2B/7B/9B/27B                     | gemma     |
| [GLM-4](https://huggingface.co/THUDM)                        | 9B                               | glm4      |
| [InternLM2](https://huggingface.co/internlm)                 | 7B/20B                           | intern2   |
| [Llama](https://github.com/facebookresearch/llama)           | 7B/13B/33B/65B                   | -         |
| [Llama 2](https://huggingface.co/meta-llama)                 | 7B/13B/70B                       | llama2    |
| [Llama 3](https://huggingface.co/meta-llama)                 | 8B/70B                           | llama3    |
| [LLaVA-1.5](https://huggingface.co/llava-hf)                 | 7B/13B                           | vicuna    |
| [Mistral/Mixtral](https://huggingface.co/mistralai)          | 7B/8x7B/8x22B                    | mistral   |
| [OLMo](https://huggingface.co/allenai)                       | 1B/7B                            | -         |
| [PaliGemma](https://huggingface.co/google)                   | 3B                               | gemma     |
| [Phi-1.5/Phi-2](https://huggingface.co/microsoft)            | 1.3B/2.7B                        | -         |
| [Phi-3](https://huggingface.co/microsoft)                    | 4B/7B/14B                        | phi       |
| [Qwen/Qwen1.5/Qwen2 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/4B/7B/14B/32B/72B/110B | qwen      |
| [StarCoder 2](https://huggingface.co/bigcode)                | 3B/7B/15B                        | -         |
| [XVERSE](https://huggingface.co/xverse)                      | 7B/13B/65B                       | xverse    |
| [Yi/Yi-1.5](https://huggingface.co/01-ai)                    | 6B/9B/34B                        | yi        |
| [Yi-VL](https://huggingface.co/01-ai)                        | 6B/34B                           | yi_vl     |
| [Yuan 2](https://huggingface.co/IEITYuan)                    | 2B/51B/102B                      | yuan      |

> [!NOTE]
> 对于所有“基座”(Base)模型,`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Instruct/Chat)模型请务必使用**对应的模板**
>
> 请务必在训练和推理时采用**完全一致**的模板。

项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。

您也可以在 [template.py](src/llamafactory/data/template.py) 中添加自己的对话模板。

## 训练方法

| 方法                   |     全参数训练      |    部分参数训练     |       LoRA         |       QLoRA        |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练                 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调            | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练            | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO 训练               | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO 训练               | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| KTO 训练               | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO 训练              | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| SimPO 训练             | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |

## 数据集

<details><summary>预训练数据集</summary>

- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)

</details>

<details><summary>指令微调数据集</summary>

- [Identity (en&zh)](data/identity.json)
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca-3)
- [Alpaca GPT4 (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Glaive Function Calling V2 (en&zh)](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
- [SlimOrca (en)](https://huggingface.co/datasets/Open-Orca/SlimOrca)
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [Wiki QA (en)](https://huggingface.co/datasets/wiki_qa)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [deepctrl (en&zh)](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data)
- [Advertise Generating (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [WebInstructSub (en)](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub)
- [Magpie-Pro-300K-Filtered (en)](https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-300K-Filtered)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
- [Alpaca GPT4 (de)](https://huggingface.co/datasets/mayflowergmbh/alpaca-gpt4_de)
- [OpenSchnabeltier (de)](https://huggingface.co/datasets/mayflowergmbh/openschnabeltier_de)
- [Evol Instruct (de)](https://huggingface.co/datasets/mayflowergmbh/evol-instruct_de)
- [Dolphin (de)](https://huggingface.co/datasets/mayflowergmbh/dolphin_de)
- [Booksum (de)](https://huggingface.co/datasets/mayflowergmbh/booksum_de)
- [Airoboros (de)](https://huggingface.co/datasets/mayflowergmbh/airoboros-3.0_de)
- [Ultrachat (de)](https://huggingface.co/datasets/mayflowergmbh/ultra-chat_de)

</details>

<details><summary>偏好数据集</summary>

- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
- [Orca DPO (de)](https://huggingface.co/datasets/mayflowergmbh/intel_orca_dpo_pairs_de)
- [KTO mixed (en)](https://huggingface.co/datasets/argilla/kto-mix-15k)

</details>

部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。

```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```

## 软硬件依赖

| 必需项       | 至少     | 推荐      |
| ------------ | ------- | --------- |
| python       | 3.8     | 3.11      |
| torch        | 1.13.1  | 2.3.0     |
| transformers | 4.41.2  | 4.41.2    |
| datasets     | 2.16.0  | 2.19.2    |
| accelerate   | 0.30.1  | 0.30.1    |
| peft         | 0.11.1  | 0.11.1    |
| trl          | 0.8.6   | 0.9.4     |

| 可选项       | 至少     | 推荐      |
| ------------ | ------- | --------- |
| CUDA         | 11.6    | 12.2      |
| deepspeed    | 0.10.0  | 0.14.0    |
| bitsandbytes | 0.39.0  | 0.43.1    |
| vllm         | 0.4.3   | 0.4.3     |
| flash-attn   | 2.3.0   | 2.5.9     |

### 硬件依赖

\* *估算值*

| 方法               | 精度 |   7B  |  13B  |  30B  |   70B  |  110B  |  8x7B |  8x22B |
| ----------------- | ---- | ----- | ----- | ----- | ------ | ------ | ----- | ------ |
| Full              | AMP  | 120GB | 240GB | 600GB | 1200GB | 2000GB | 900GB | 2400GB |
| Full              |  16  |  60GB | 120GB | 300GB |  600GB |  900GB | 400GB | 1200GB |
| Freeze            |  16  |  20GB |  40GB |  80GB |  200GB |  360GB | 160GB |  400GB |
| LoRA/GaLore/BAdam |  16  |  16GB |  32GB |  64GB |  160GB |  240GB | 120GB |  320GB |
| QLoRA             |   8  |  10GB |  20GB |  40GB |   80GB |  140GB |  60GB |  160GB |
| QLoRA             |   4  |   6GB |  12GB |  24GB |   48GB |   72GB |  30GB |   96GB |
| QLoRA             |   2  |   4GB |   8GB |  16GB |   24GB |   48GB |  18GB |   48GB |

## 如何使用

### 安装 LLaMA Factory

> [!IMPORTANT]
> 此步骤为必需。

```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
```

可选的额外依赖项:torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、qwen、modelscope、quality

> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。

<details><summary>Windows 用户指南</summary>

如果要在 Windows 平台上开启量化 LoRA(QLoRA),需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.2, 请根据您的 CUDA 版本情况选择适合的[发布版本](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels)。

```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
```

如果要在 Windows 平台上开启 FlashAttention-2,需要安装预编译的 `flash-attn` 库,支持 CUDA 12.1 到 12.2,请根据需求到 [flash-attention](https://github.com/bdashore3/flash-attention/releases) 下载对应版本安装。

</details>

<details><summary>昇腾 NPU 用户指南</summary>

在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e ".[torch-npu,metrics]"` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit 与 Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:

```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
# 安装 CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install

# 安装 CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install

# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```

| 依赖项       | 至少     | 推荐        |
| ------------ | ------- | ----------- |
| CANN         | 8.0.RC1 | 8.0.RC1     |
| torch        | 2.1.0   | 2.1.0       |
| torch-npu    | 2.1.0   | 2.1.0.post3 |
| deepspeed    | 0.13.2  | 0.13.2      |

请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。

如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。

下载预构建 Docker 镜像:[32GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html) | [64GB](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)

</details>

### 数据准备

关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。

> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。

### 快速开始

下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。

```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```

高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。

> [!TIP]
> 使用 `llamafactory-cli help` 显示帮助信息。

### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)

```bash
llamafactory-cli webui
```

### 构建 Docker

CUDA 用户:

```bash
cd docker/docker-cuda/
docker-compose up -d
docker-compose exec llamafactory bash
```

昇腾 NPU 用户:

```bash
cd docker/docker-npu/
docker-compose up -d
docker-compose exec llamafactory bash
```

<details><summary>不使用 Docker Compose 构建</summary>

CUDA 用户:

```bash
docker build -f ./docker/docker-cuda/Dockerfile \
    --build-arg INSTALL_BNB=false \
    --build-arg INSTALL_VLLM=false \
    --build-arg INSTALL_DEEPSPEED=false \
    --build-arg INSTALL_FLASHATTN=false \
    --build-arg PIP_INDEX=https://pypi.org/simple \
    -t llamafactory:latest .

docker run -dit --gpus=all \
    -v ./hf_cache:/root/.cache/huggingface \
    -v ./ms_cache:/root/.cache/modelscope \
    -v ./data:/app/data \
    -v ./output:/app/output \
    -p 7860:7860 \
    -p 8000:8000 \
    --shm-size 16G \
    --name llamafactory \
    llamafactory:latest

docker exec -it llamafactory bash
```

昇腾 NPU 用户:

```bash
# 根据您的环境选择镜像
docker build -f ./docker/docker-npu/Dockerfile \
    --build-arg INSTALL_DEEPSPEED=false \
    --build-arg PIP_INDEX=https://pypi.org/simple \
    -t llamafactory:latest .

# 根据您的资源更改 `device`
docker run -dit \
    -v ./hf_cache:/root/.cache/huggingface \
    -v ./ms_cache:/root/.cache/modelscope \
    -v ./data:/app/data \
    -v ./output:/app/output \
    -v /usr/local/dcmi:/usr/local/dcmi \
    -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
    -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
    -v /etc/ascend_install.info:/etc/ascend_install.info \
    -p 7860:7860 \
    -p 8000:8000 \
    --device /dev/davinci0 \
    --device /dev/davinci_manager \
    --device /dev/devmm_svm \
    --device /dev/hisi_hdc \
    --shm-size 16G \
    --name llamafactory \
    llamafactory:latest

docker exec -it llamafactory bash
```

</details>

<details><summary>数据卷详情</summary>

- hf_cache:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- data:宿主机中存放数据集的文件夹路径。
- output:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。

</details>

### 利用 vLLM 部署 OpenAI API

```bash
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```

> [!TIP]
> API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。

### 从魔搭社区下载

如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。

```bash
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
```

将 `model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。

### 使用 W&B 面板

若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请在 yaml 文件中添加下面的参数。

```yaml
report_to: wandb
run_name: test_run # 可选
```

在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。

## 使用了 LLaMA Factory 的项目

如果您有项目希望添加至下述列表,请通过邮件联系或者创建一个 PR。

<details><summary>点击显示</summary>

1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
1. Yu et al. Open, Closed, or Small Language Models for Text Classification? 2023. [[arxiv]](https://arxiv.org/abs/2308.10092)
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
1. Ding et al. IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce. 2024. [[arxiv]](https://arxiv.org/abs/2406.10173)
1. He et al. COMMUNITY-CROSS-INSTRUCT: Unsupervised Instruction Generation for Aligning Large Language Models to Online Communities. 2024. [[arxiv]](https://arxiv.org/abs/2406.12074)
1. Lin et al. FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving. 2024. [[arxiv]](https://arxiv.org/abs/2406.14408)
1. Treutlein et al. Connecting the Dots: LLMs can Infer and Verbalize Latent Structure from Disparate Training Data. 2024. [[arxiv]](https://arxiv.org/abs/2406.14546)
1. Feng et al. SS-Bench: A Benchmark for Social Story Generation and Evaluation. 2024. [[arxiv]](https://arxiv.org/abs/2406.15695)
1. Feng et al. Self-Constructed Context Decompilation with Fined-grained Alignment Enhancement. 2024. [[arxiv]](https://arxiv.org/abs/2406.17233)
1. Liu et al. Large Language Models for Cuffless Blood Pressure Measurement From Wearable Biosignals. 2024. [[arxiv]](https://arxiv.org/abs/2406.18069)
1. Iyer et al. Exploring Very Low-Resource Translation with LLMs: The University of Edinburgh’s Submission to AmericasNLP 2024 Translation Task. AmericasNLP 2024. [[paper]](https://aclanthology.org/2024.americasnlp-1.25)
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
1. **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT,基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**:在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
1. **[LazyLLM](https://github.com/LazyAGI/LazyLLM)**:一个低代码构建多 Agent 大模型应用的开发工具,支持基于 LLaMA Factory 的模型微调.

</details>

## 协议

本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。

使用模型权重时,请遵循对应的模型协议:[Baichuan 2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM-4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [Llama](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [Llama 2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [Llama 3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/Phi-2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder 2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan 2](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)

## 引用

如果您觉得此项目有帮助,请考虑以下列格式引用

```bibtex
@inproceedings{zheng2024llamafactory,
  title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
  author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
  booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
  address={Bangkok, Thailand},
  publisher={Association for Computational Linguistics},
  year={2024},
  url={http://arxiv.org/abs/2403.13372}
}
```

## 致谢

本项目受益于 [PEFT](https://github.com/huggingface/peft)、[TRL](https://github.com/huggingface/trl)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。

## Star History

![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)