File size: 1,780 Bytes
8aacaa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d7387
8aacaa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d7387
8aacaa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
datasets:
- mlabonne/Evol-Instruct-Python-26k
language:
- en
library_name: adapter-transformers
tags:
- code
---

## Model Details

### Model Description

- **Developed by:** Zidan Alfarizi
- **Model type:** large language model for code generation
- **Language(s) (NLP):** English
- **Finetuned from model:** lMistral 7b

### Model Sources 

- **Repository:** https://github.com/unslothai/unsloth
- **Developed by:** unsloth

### Model parameter

- r = 16, 
- target_modules = ["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],
- lora_alpha = 16,
- lora_dropout = 0, 
- bias = "none",    
- use_gradient_checkpointing = "unsloth", 
- random_state = 3407,
- use_rslora = False,  
- loftq_config = None, 

## Usage and limitations

This model is used to generate code based on commands given by the user. it should be noted that this model can generate many languages because it takes the initial model from llama2. However, after finetuning it is better at generating python code, because currently it is only trained with python code datasets. 

## How to Get Started with the Model

use link below to use model
//

### Training Data

https://huggingface.co/datasets/mlabonne/Evol-Instruct-Python-26k


#### Training Hyperparameters

- **Warmup_step:** 5
- **lr_scheduler_type:** linear
- **Learning Rate:** 0.0002
- **Batch Size:** 2
- **Weigh_decay:** 0.001
- **Epoch:** 30
- **Optimizer:** adamw_8bit

#### Testing Data

https://huggingface.co/datasets/google-research-datasets/mbpp/viewer/full

### Testing Document

https://docs.google.com/spreadsheets/d/1hr8R4nixQsDC5cGGENTOLUW1jPCS_lltVRIeOzenBvA/edit?usp=sharing

### Results

Berfore finetune 
- Accurary : 56%
- Consistensy : 0.4%

After fine tune 
- Accuracy : 59%
- Consistency : 100%