|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
""" Florence-2 configuration""" |
|
|
|
from typing import Optional |
|
|
|
from transformers import AutoConfig |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class Florence2VisionConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel |
|
according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the Florence2VisionModel architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
drop_path_rate (`float`, *optional*, defaults to 0.1): |
|
The dropout rate of the drop path layer. |
|
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]): |
|
The patch size of the image. |
|
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]): |
|
The patch stride of the image. |
|
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]): |
|
The patch padding of the image. |
|
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]): |
|
Whether to apply layer normalization before the patch embedding layer. |
|
enable_checkpoint (`bool`, *optional*, defaults to False): |
|
Whether to enable checkpointing. |
|
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]): |
|
The dimension of the embedding layer. |
|
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): |
|
The number of attention heads. |
|
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]): |
|
The number of groups. |
|
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]): |
|
The depth of the model. |
|
window_size (`int`, *optional*, defaults to 12): |
|
The window size of the model. |
|
projection_dim (`int`, *optional*, defaults to 1024): |
|
The dimension of the projection layer. |
|
visual_temporal_embedding (`dict`, *optional*): |
|
The configuration of the visual temporal embedding. |
|
image_pos_embed (`dict`, *optional*): |
|
The configuration of the image position embedding. |
|
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]): |
|
The source of the image feature. |
|
Example: |
|
|
|
```python |
|
>>> from transformers import Florence2VisionConfig, Florence2VisionModel |
|
|
|
>>> # Initializing a Florence2 Vision style configuration |
|
>>> configuration = Florence2VisionConfig() |
|
|
|
>>> # Initializing a model (with random weights) |
|
>>> model = Florence2VisionModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "florence2_vision" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
def __init__( |
|
self, |
|
drop_path_rate=0.1, |
|
patch_size=[7, 3, 3, 3], |
|
patch_stride=[4, 2, 2, 2], |
|
patch_padding=[3, 1, 1, 1], |
|
patch_prenorm=[False, True, True, True], |
|
enable_checkpoint=False, |
|
dim_embed=[256, 512, 1024, 2048], |
|
num_heads=[8, 16, 32, 64], |
|
num_groups=[8, 16, 32, 64], |
|
depths=[1, 1, 9, 1], |
|
window_size=12, |
|
projection_dim=1024, |
|
visual_temporal_embedding=None, |
|
image_pos_embed=None, |
|
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"], |
|
**kwargs, |
|
): |
|
self.drop_path_rate = drop_path_rate |
|
self.patch_size = patch_size |
|
self.patch_stride = patch_stride |
|
self.patch_padding = patch_padding |
|
self.patch_prenorm = patch_prenorm |
|
self.enable_checkpoint = enable_checkpoint |
|
self.dim_embed = dim_embed |
|
self.num_heads = num_heads |
|
self.num_groups = num_groups |
|
self.depths = depths |
|
self.window_size = window_size |
|
self.projection_dim = projection_dim |
|
self.visual_temporal_embedding = visual_temporal_embedding |
|
self.image_pos_embed = image_pos_embed |
|
self.image_feature_source = image_feature_source |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
|
|
class Florence2LanguageConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART |
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
defaults will yield a similar configuration to that of the BART |
|
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 51289): |
|
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`Florence2LanguageModel`]. |
|
d_model (`int`, *optional*, defaults to 1024): |
|
Dimensionality of the layers and the pooler layer. |
|
encoder_layers (`int`, *optional*, defaults to 12): |
|
Number of encoder layers. |
|
decoder_layers (`int`, *optional*, defaults to 12): |
|
Number of decoder layers. |
|
encoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
decoder_attention_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
decoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
encoder_ffn_dim (`int`, *optional*, defaults to 4096): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. |
|
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"silu"` and `"gelu_new"` are supported. |
|
dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for the attention probabilities. |
|
activation_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for activations inside the fully connected layer. |
|
classifier_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout ratio for classifier. |
|
max_position_embeddings (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
init_std (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
encoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
decoder_layerdrop (`float`, *optional*, defaults to 0.0): |
|
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) |
|
for more details. |
|
scale_embedding (`bool`, *optional*, defaults to `False`): |
|
Scale embeddings by diving by sqrt(d_model). |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
num_labels (`int`, *optional*, defaults to 3): |
|
The number of labels to use in [`Florence2LanguageForSequenceClassification`]. |
|
forced_eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the token to force as the last generated token when `max_length` is reached. Usually set to |
|
`eos_token_id`. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel |
|
|
|
>>> # Initializing a Florence2 Language style configuration |
|
>>> configuration = Florence2LanguageConfig() |
|
|
|
>>> # Initializing a model (with random weights) |
|
>>> model = Florence2LangaugeModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "florence2_language" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=51289, |
|
max_position_embeddings=1024, |
|
encoder_layers=12, |
|
encoder_ffn_dim=4096, |
|
encoder_attention_heads=16, |
|
decoder_layers=12, |
|
decoder_ffn_dim=4096, |
|
decoder_attention_heads=16, |
|
encoder_layerdrop=0.0, |
|
decoder_layerdrop=0.0, |
|
activation_function="gelu", |
|
d_model=1024, |
|
dropout=0.1, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
classifier_dropout=0.0, |
|
scale_embedding=False, |
|
use_cache=True, |
|
num_labels=3, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
is_encoder_decoder=True, |
|
decoder_start_token_id=2, |
|
forced_eos_token_id=2, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.d_model = d_model |
|
self.encoder_ffn_dim = encoder_ffn_dim |
|
self.encoder_layers = encoder_layers |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.decoder_ffn_dim = decoder_ffn_dim |
|
self.decoder_layers = decoder_layers |
|
self.decoder_attention_heads = decoder_attention_heads |
|
self.dropout = dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.activation_function = activation_function |
|
self.init_std = init_std |
|
self.encoder_layerdrop = encoder_layerdrop |
|
self.decoder_layerdrop = decoder_layerdrop |
|
self.classifier_dropout = classifier_dropout |
|
self.use_cache = use_cache |
|
self.num_hidden_layers = encoder_layers |
|
self.scale_embedding = scale_embedding |
|
|
|
super().__init__( |
|
num_labels=num_labels, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
is_encoder_decoder=is_encoder_decoder, |
|
decoder_start_token_id=decoder_start_token_id, |
|
forced_eos_token_id=forced_eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
|
|
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False): |
|
self.forced_bos_token_id = self.bos_token_id |
|
warnings.warn( |
|
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " |
|
"The config can simply be saved and uploaded again to be fixed." |
|
) |
|
|
|
class Florence2Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an |
|
Florence-2 model according to the specified arguments, defining the model architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`Florence2VisionConfig`, *optional*): |
|
Custom vision config or dict |
|
text_config (`Union[AutoConfig, dict]`, *optional*): |
|
The config object of the text backbone. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
vocab_size (`int`, *optional*, defaults to 51289): |
|
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`] |
|
projection_dim (`int`, *optional*, defaults to 1024): |
|
Dimension of the multimodal projection space. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig |
|
|
|
>>> # Initializing a clip-like vision config |
|
>>> vision_config = CLIPVisionConfig() |
|
|
|
>>> # Initializing a Bart config |
|
>>> text_config = BartConfig() |
|
|
|
>>> # Initializing a Florence-2 configuration |
|
>>> configuration = Florence2Config(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the florence-2 configuration |
|
>>> model = Florence2ForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "florence2" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
vocab_size=51289, |
|
projection_dim=1024, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.vocab_size = vocab_size |
|
self.projection_dim = projection_dim |
|
if vision_config is not None: |
|
vision_config = PretrainedConfig(**vision_config) |
|
self.vision_config = vision_config |
|
self.vocab_size = self.vocab_size |
|
|
|
self.text_config = text_config |
|
if text_config is not None: |
|
self.text_config = Florence2LanguageConfig(**text_config) |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|