--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1249 --- # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.8720 - Rouge1: 0.1249 - Rouge2: 0.036 - Rougel: 0.1041 - Rougelsum: 0.1044 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 21 | 3.4317 | 0.1407 | 0.0466 | 0.1169 | 0.1169 | 19.0 | | No log | 2.0 | 42 | 3.0529 | 0.1301 | 0.0405 | 0.1087 | 0.1086 | 19.0 | | No log | 3.0 | 63 | 2.9112 | 0.1261 | 0.0371 | 0.1054 | 0.1057 | 19.0 | | No log | 4.0 | 84 | 2.8720 | 0.1249 | 0.036 | 0.1041 | 0.1044 | 19.0 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3