suayptalha
commited on
Create modeling_minGRULM.py
Browse files- modeling_minGRULM.py +161 -0
modeling_minGRULM.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from typing import Optional
|
7 |
+
import os
|
8 |
+
from .configuration_minGRULM import MinGRULMConfig
|
9 |
+
from minGRU_pytorch.minGRULM import minGRULM
|
10 |
+
|
11 |
+
|
12 |
+
class MinGRULMWrapped(nn.Module):
|
13 |
+
def __init__(self, min_gru_model):
|
14 |
+
super().__init__()
|
15 |
+
self.min_gru_model = min_gru_model
|
16 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
def forward(self, *args, **kwargs):
|
19 |
+
args = [arg.to(self.device) if isinstance(arg, torch.Tensor) else arg for arg in args]
|
20 |
+
kwargs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
|
21 |
+
return self.min_gru_model(*args, **kwargs)
|
22 |
+
|
23 |
+
def to(self, device):
|
24 |
+
self.device = device
|
25 |
+
self.min_gru_model.to(device)
|
26 |
+
return self
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
class MinGRULMPreTrainedModel(PreTrainedModel):
|
31 |
+
config_class = MinGRULMConfig
|
32 |
+
base_model_prefix = "model"
|
33 |
+
|
34 |
+
def _init_weights(self, module):
|
35 |
+
std = self.config.initializer_range
|
36 |
+
if isinstance(module, nn.Linear):
|
37 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
38 |
+
if module.bias is not None:
|
39 |
+
module.bias.data.zero_()
|
40 |
+
elif isinstance(module, nn.Embedding):
|
41 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
42 |
+
if module.padding_idx is not None:
|
43 |
+
module.weight.data[module.padding_idx].zero_()
|
44 |
+
elif isinstance(module, nn.LayerNorm):
|
45 |
+
module.bias.data.zero_()
|
46 |
+
module.weight.data.fill_(1.0)
|
47 |
+
|
48 |
+
for name, param in module.named_parameters():
|
49 |
+
if torch.isnan(param).any():
|
50 |
+
print(f"NaN detected in parameter {name}. Replacing with a safe number.")
|
51 |
+
param.data = torch.nan_to_num(param.data, nan=1e-6)
|
52 |
+
|
53 |
+
|
54 |
+
class MinGRULMForCausalLM(PreTrainedModel):
|
55 |
+
config_class = MinGRULMConfig
|
56 |
+
base_model_prefix = "model"
|
57 |
+
|
58 |
+
def __init__(self, config: MinGRULMConfig):
|
59 |
+
super().__init__(config)
|
60 |
+
|
61 |
+
raw_min_gru = minGRULM(
|
62 |
+
num_tokens=config.vocab_size,
|
63 |
+
dim=config.d_model,
|
64 |
+
depth=config.n_layer,
|
65 |
+
ff_mult=config.ff_mult,
|
66 |
+
min_gru_expansion=config.min_gru_expansion,
|
67 |
+
enable_conv=config.enable_conv,
|
68 |
+
)
|
69 |
+
self.model = MinGRULMWrapped(raw_min_gru)
|
70 |
+
|
71 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
72 |
+
|
73 |
+
self.post_init()
|
74 |
+
|
75 |
+
def post_init(self):
|
76 |
+
super().post_init()
|
77 |
+
self.tie_weights()
|
78 |
+
|
79 |
+
def tie_weights(self):
|
80 |
+
self.lm_head.weight = self.model.min_gru_model.token_emb.weight
|
81 |
+
|
82 |
+
def get_input_embeddings(self):
|
83 |
+
return self.model.min_gru_model.token_emb
|
84 |
+
|
85 |
+
def set_input_embeddings(self, value):
|
86 |
+
self.model.min_gru_model.token_emb = value
|
87 |
+
|
88 |
+
def get_output_embeddings(self):
|
89 |
+
return self.lm_head
|
90 |
+
|
91 |
+
def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs):
|
92 |
+
return {"input_ids": input_ids, "attention_mask": kwargs.get("attention_mask", None)}
|
93 |
+
|
94 |
+
def forward(self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = True, **kwargs):
|
95 |
+
logits = self.model(input_ids)
|
96 |
+
|
97 |
+
if torch.isnan(logits).any():
|
98 |
+
print("NaN detected in logits! Replacing with a safe number.")
|
99 |
+
logits = torch.nan_to_num(logits, nan=1e-6)
|
100 |
+
|
101 |
+
loss = None
|
102 |
+
if labels is not None:
|
103 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
104 |
+
shift_labels = labels[..., 1:].contiguous()
|
105 |
+
loss_fct = CrossEntropyLoss()
|
106 |
+
loss = loss_fct(
|
107 |
+
shift_logits.view(-1, self.config.vocab_size),
|
108 |
+
shift_labels.view(-1),
|
109 |
+
)
|
110 |
+
|
111 |
+
if torch.isnan(loss).any():
|
112 |
+
print("NaN detected in loss! Replacing with a safe number.")
|
113 |
+
loss = torch.nan_to_num(loss, nan=1e-6)
|
114 |
+
|
115 |
+
if not return_dict:
|
116 |
+
return (loss, logits) if loss is not None else (logits,)
|
117 |
+
|
118 |
+
return CausalLMOutputWithPast(
|
119 |
+
loss=loss,
|
120 |
+
logits=logits,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
@classmethod
|
125 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
126 |
+
"""
|
127 |
+
Load model from a pretrained checkpoint.
|
128 |
+
"""
|
129 |
+
model = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
130 |
+
return model
|
131 |
+
|
132 |
+
def save_pretrained(self, save_directory, safe_serialization: Optional[bool] = True, **kwargs):
|
133 |
+
"""
|
134 |
+
Save the model and configuration to a directory.
|
135 |
+
|
136 |
+
Args:
|
137 |
+
save_directory (str): Directory to save the model.
|
138 |
+
safe_serialization (bool, optional): Whether to use safe serialization. Defaults to True.
|
139 |
+
kwargs: Additional arguments like max_shard_size (ignored in this implementation).
|
140 |
+
"""
|
141 |
+
import os
|
142 |
+
os.makedirs(save_directory, exist_ok=True)
|
143 |
+
|
144 |
+
if safe_serialization:
|
145 |
+
print("Saving with safe serialization.")
|
146 |
+
|
147 |
+
state_dict = {}
|
148 |
+
|
149 |
+
for name, param in self.model.min_gru_model.named_parameters():
|
150 |
+
state_dict[f"model.{name}"] = param
|
151 |
+
|
152 |
+
for name, param in self.classifier.named_parameters():
|
153 |
+
state_dict[f"classifier.{name}"] = param
|
154 |
+
|
155 |
+
state_dict['config'] = self.config.__dict__
|
156 |
+
torch.save(state_dict, os.path.join(save_directory, "pytorch_model.bin"))
|
157 |
+
|
158 |
+
self.config.save_pretrained(save_directory)
|
159 |
+
else:
|
160 |
+
print("Saving without safe serialization.")
|
161 |
+
super().save_pretrained(save_directory)
|