strongpear
commited on
strongpear/Llama3.1-8B-QA_CoT-WIKI-Instruct-r64
Browse files- README.md +247 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.1
|
4 |
+
base_model: meta-llama/Llama-3.1-8B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: Llama3.1-8B-QA_CoT-WIKI-Instruct-r64
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Llama3.1-8B-QA_CoT-WIKI-Instruct-r64
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9065
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3.6e-05
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
43 |
+
- lr_scheduler_type: cosine
|
44 |
+
- lr_scheduler_warmup_steps: 100
|
45 |
+
- num_epochs: 1
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
52 |
+
| 1.1313 | 0.0053 | 200 | 1.1573 |
|
53 |
+
| 1.133 | 0.0107 | 400 | 1.1453 |
|
54 |
+
| 1.1442 | 0.016 | 600 | 1.1396 |
|
55 |
+
| 1.1934 | 0.0213 | 800 | 1.1356 |
|
56 |
+
| 1.0369 | 0.0267 | 1000 | 1.1301 |
|
57 |
+
| 1.1972 | 0.032 | 1200 | 1.1274 |
|
58 |
+
| 1.1383 | 0.0373 | 1400 | 1.1250 |
|
59 |
+
| 1.0974 | 0.0427 | 1600 | 1.1228 |
|
60 |
+
| 1.0448 | 0.048 | 1800 | 1.1210 |
|
61 |
+
| 1.1374 | 0.0533 | 2000 | 1.1175 |
|
62 |
+
| 1.1452 | 0.0587 | 2200 | 1.1154 |
|
63 |
+
| 1.1512 | 0.064 | 2400 | 1.1124 |
|
64 |
+
| 1.1899 | 0.0693 | 2600 | 1.1109 |
|
65 |
+
| 1.162 | 0.0747 | 2800 | 1.1079 |
|
66 |
+
| 1.1399 | 0.08 | 3000 | 1.1067 |
|
67 |
+
| 1.193 | 0.0853 | 3200 | 1.1039 |
|
68 |
+
| 1.0879 | 0.0907 | 3400 | 1.1012 |
|
69 |
+
| 1.1232 | 0.096 | 3600 | 1.1001 |
|
70 |
+
| 0.9941 | 0.1013 | 3800 | 1.0988 |
|
71 |
+
| 1.0458 | 0.1067 | 4000 | 1.0964 |
|
72 |
+
| 1.1045 | 0.112 | 4200 | 1.0950 |
|
73 |
+
| 1.0275 | 0.1173 | 4400 | 1.0931 |
|
74 |
+
| 1.1429 | 0.1227 | 4600 | 1.0906 |
|
75 |
+
| 1.1454 | 0.128 | 4800 | 1.0896 |
|
76 |
+
| 1.0742 | 0.1333 | 5000 | 1.0881 |
|
77 |
+
| 1.0694 | 0.1387 | 5200 | 1.0864 |
|
78 |
+
| 1.0187 | 0.144 | 5400 | 1.0848 |
|
79 |
+
| 1.1096 | 0.1493 | 5600 | 1.0824 |
|
80 |
+
| 1.1191 | 0.1547 | 5800 | 1.0804 |
|
81 |
+
| 1.1421 | 0.16 | 6000 | 1.0797 |
|
82 |
+
| 1.0974 | 0.1653 | 6200 | 1.0774 |
|
83 |
+
| 1.0815 | 0.1707 | 6400 | 1.0764 |
|
84 |
+
| 1.0659 | 0.176 | 6600 | 1.0740 |
|
85 |
+
| 1.1023 | 0.1813 | 6800 | 1.0720 |
|
86 |
+
| 1.0861 | 0.1867 | 7000 | 1.0704 |
|
87 |
+
| 1.1006 | 0.192 | 7200 | 1.0691 |
|
88 |
+
| 1.0768 | 0.1973 | 7400 | 1.0684 |
|
89 |
+
| 1.087 | 0.2027 | 7600 | 1.0664 |
|
90 |
+
| 1.1712 | 0.208 | 7800 | 1.0645 |
|
91 |
+
| 1.1151 | 0.2133 | 8000 | 1.0621 |
|
92 |
+
| 1.0282 | 0.2187 | 8200 | 1.0609 |
|
93 |
+
| 1.1077 | 0.224 | 8400 | 1.0591 |
|
94 |
+
| 1.0568 | 0.2293 | 8600 | 1.0569 |
|
95 |
+
| 1.0618 | 0.2347 | 8800 | 1.0554 |
|
96 |
+
| 1.07 | 0.24 | 9000 | 1.0538 |
|
97 |
+
| 1.0269 | 0.2453 | 9200 | 1.0524 |
|
98 |
+
| 1.0519 | 0.2507 | 9400 | 1.0507 |
|
99 |
+
| 1.0626 | 0.256 | 9600 | 1.0492 |
|
100 |
+
| 0.9715 | 0.2613 | 9800 | 1.0483 |
|
101 |
+
| 1.1142 | 0.2667 | 10000 | 1.0454 |
|
102 |
+
| 1.0678 | 0.272 | 10200 | 1.0436 |
|
103 |
+
| 1.0614 | 0.2773 | 10400 | 1.0418 |
|
104 |
+
| 1.0819 | 0.2827 | 10600 | 1.0407 |
|
105 |
+
| 1.0125 | 0.288 | 10800 | 1.0390 |
|
106 |
+
| 0.9855 | 0.2933 | 11000 | 1.0376 |
|
107 |
+
| 1.1239 | 0.2987 | 11200 | 1.0352 |
|
108 |
+
| 1.0943 | 0.304 | 11400 | 1.0337 |
|
109 |
+
| 0.9119 | 0.3093 | 11600 | 1.0318 |
|
110 |
+
| 1.035 | 0.3147 | 11800 | 1.0297 |
|
111 |
+
| 1.0769 | 0.32 | 12000 | 1.0291 |
|
112 |
+
| 0.999 | 0.3253 | 12200 | 1.0263 |
|
113 |
+
| 1.03 | 0.3307 | 12400 | 1.0243 |
|
114 |
+
| 0.954 | 0.336 | 12600 | 1.0234 |
|
115 |
+
| 1.1006 | 0.3413 | 12800 | 1.0215 |
|
116 |
+
| 0.9556 | 0.3467 | 13000 | 1.0213 |
|
117 |
+
| 1.0479 | 0.352 | 13200 | 1.0194 |
|
118 |
+
| 1.0575 | 0.3573 | 13400 | 1.0184 |
|
119 |
+
| 1.0642 | 0.3627 | 13600 | 1.0159 |
|
120 |
+
| 0.9822 | 0.368 | 13800 | 1.0150 |
|
121 |
+
| 0.9071 | 0.3733 | 14000 | 1.0148 |
|
122 |
+
| 0.9964 | 0.3787 | 14200 | 1.0113 |
|
123 |
+
| 0.9453 | 0.384 | 14400 | 1.0111 |
|
124 |
+
| 1.087 | 0.3893 | 14600 | 1.0093 |
|
125 |
+
| 0.9752 | 0.3947 | 14800 | 1.0072 |
|
126 |
+
| 1.0191 | 0.4 | 15000 | 1.0055 |
|
127 |
+
| 0.9155 | 0.4053 | 15200 | 1.0046 |
|
128 |
+
| 0.993 | 0.4107 | 15400 | 1.0037 |
|
129 |
+
| 0.9751 | 0.416 | 15600 | 1.0017 |
|
130 |
+
| 0.9106 | 0.4213 | 15800 | 1.0005 |
|
131 |
+
| 1.0481 | 0.4267 | 16000 | 0.9984 |
|
132 |
+
| 1.0122 | 0.432 | 16200 | 0.9972 |
|
133 |
+
| 1.0139 | 0.4373 | 16400 | 0.9962 |
|
134 |
+
| 0.9695 | 0.4427 | 16600 | 0.9947 |
|
135 |
+
| 0.9901 | 0.448 | 16800 | 0.9931 |
|
136 |
+
| 1.0267 | 0.4533 | 17000 | 0.9915 |
|
137 |
+
| 1.023 | 0.4587 | 17200 | 0.9905 |
|
138 |
+
| 0.9115 | 0.464 | 17400 | 0.9887 |
|
139 |
+
| 0.992 | 0.4693 | 17600 | 0.9875 |
|
140 |
+
| 0.9825 | 0.4747 | 17800 | 0.9859 |
|
141 |
+
| 1.0156 | 0.48 | 18000 | 0.9844 |
|
142 |
+
| 0.9752 | 0.4853 | 18200 | 0.9821 |
|
143 |
+
| 0.9341 | 0.4907 | 18400 | 0.9809 |
|
144 |
+
| 1.0059 | 0.496 | 18600 | 0.9787 |
|
145 |
+
| 0.957 | 0.5013 | 18800 | 0.9776 |
|
146 |
+
| 1.0018 | 0.5067 | 19000 | 0.9761 |
|
147 |
+
| 1.0889 | 0.512 | 19200 | 0.9749 |
|
148 |
+
| 1.0207 | 0.5173 | 19400 | 0.9733 |
|
149 |
+
| 1.0471 | 0.5227 | 19600 | 0.9714 |
|
150 |
+
| 0.9102 | 0.528 | 19800 | 0.9702 |
|
151 |
+
| 1.0149 | 0.5333 | 20000 | 0.9690 |
|
152 |
+
| 0.9784 | 0.5387 | 20200 | 0.9678 |
|
153 |
+
| 0.9302 | 0.544 | 20400 | 0.9658 |
|
154 |
+
| 0.9773 | 0.5493 | 20600 | 0.9643 |
|
155 |
+
| 1.0273 | 0.5547 | 20800 | 0.9627 |
|
156 |
+
| 0.8573 | 0.56 | 21000 | 0.9610 |
|
157 |
+
| 0.9683 | 0.5653 | 21200 | 0.9594 |
|
158 |
+
| 1.0293 | 0.5707 | 21400 | 0.9579 |
|
159 |
+
| 0.9456 | 0.576 | 21600 | 0.9567 |
|
160 |
+
| 0.9811 | 0.5813 | 21800 | 0.9559 |
|
161 |
+
| 0.9632 | 0.5867 | 22000 | 0.9541 |
|
162 |
+
| 1.0088 | 0.592 | 22200 | 0.9528 |
|
163 |
+
| 1.0229 | 0.5973 | 22400 | 0.9516 |
|
164 |
+
| 0.9801 | 0.6027 | 22600 | 0.9502 |
|
165 |
+
| 0.9992 | 0.608 | 22800 | 0.9486 |
|
166 |
+
| 0.8908 | 0.6133 | 23000 | 0.9475 |
|
167 |
+
| 0.9329 | 0.6187 | 23200 | 0.9467 |
|
168 |
+
| 0.9937 | 0.624 | 23400 | 0.9452 |
|
169 |
+
| 0.9478 | 0.6293 | 23600 | 0.9444 |
|
170 |
+
| 0.8929 | 0.6347 | 23800 | 0.9431 |
|
171 |
+
| 0.9073 | 0.64 | 24000 | 0.9421 |
|
172 |
+
| 0.9182 | 0.6453 | 24200 | 0.9409 |
|
173 |
+
| 0.956 | 0.6507 | 24400 | 0.9397 |
|
174 |
+
| 0.923 | 0.656 | 24600 | 0.9387 |
|
175 |
+
| 0.9523 | 0.6613 | 24800 | 0.9376 |
|
176 |
+
| 0.976 | 0.6667 | 25000 | 0.9364 |
|
177 |
+
| 0.839 | 0.672 | 25200 | 0.9356 |
|
178 |
+
| 0.9245 | 0.6773 | 25400 | 0.9345 |
|
179 |
+
| 0.9345 | 0.6827 | 25600 | 0.9333 |
|
180 |
+
| 0.8861 | 0.688 | 25800 | 0.9323 |
|
181 |
+
| 0.9134 | 0.6933 | 26000 | 0.9312 |
|
182 |
+
| 0.9297 | 0.6987 | 26200 | 0.9302 |
|
183 |
+
| 0.8873 | 0.704 | 26400 | 0.9291 |
|
184 |
+
| 0.963 | 0.7093 | 26600 | 0.9281 |
|
185 |
+
| 1.0326 | 0.7147 | 26800 | 0.9274 |
|
186 |
+
| 0.8596 | 0.72 | 27000 | 0.9263 |
|
187 |
+
| 0.8968 | 0.7253 | 27200 | 0.9252 |
|
188 |
+
| 0.9147 | 0.7307 | 27400 | 0.9241 |
|
189 |
+
| 0.9149 | 0.736 | 27600 | 0.9230 |
|
190 |
+
| 0.9049 | 0.7413 | 27800 | 0.9222 |
|
191 |
+
| 0.9949 | 0.7467 | 28000 | 0.9215 |
|
192 |
+
| 0.8797 | 0.752 | 28200 | 0.9207 |
|
193 |
+
| 0.8369 | 0.7573 | 28400 | 0.9199 |
|
194 |
+
| 1.0025 | 0.7627 | 28600 | 0.9192 |
|
195 |
+
| 0.9577 | 0.768 | 28800 | 0.9184 |
|
196 |
+
| 0.9422 | 0.7733 | 29000 | 0.9177 |
|
197 |
+
| 0.971 | 0.7787 | 29200 | 0.9170 |
|
198 |
+
| 0.8421 | 0.784 | 29400 | 0.9166 |
|
199 |
+
| 0.9989 | 0.7893 | 29600 | 0.9160 |
|
200 |
+
| 0.9053 | 0.7947 | 29800 | 0.9154 |
|
201 |
+
| 0.9312 | 0.8 | 30000 | 0.9146 |
|
202 |
+
| 0.8888 | 0.8053 | 30200 | 0.9141 |
|
203 |
+
| 0.9331 | 0.8107 | 30400 | 0.9135 |
|
204 |
+
| 0.9652 | 0.816 | 30600 | 0.9129 |
|
205 |
+
| 0.8413 | 0.8213 | 30800 | 0.9124 |
|
206 |
+
| 0.9307 | 0.8267 | 31000 | 0.9119 |
|
207 |
+
| 0.8598 | 0.832 | 31200 | 0.9115 |
|
208 |
+
| 0.921 | 0.8373 | 31400 | 0.9111 |
|
209 |
+
| 0.9171 | 0.8427 | 31600 | 0.9107 |
|
210 |
+
| 0.9949 | 0.848 | 31800 | 0.9103 |
|
211 |
+
| 0.8467 | 0.8533 | 32000 | 0.9099 |
|
212 |
+
| 0.8858 | 0.8587 | 32200 | 0.9097 |
|
213 |
+
| 0.9111 | 0.864 | 32400 | 0.9093 |
|
214 |
+
| 0.8814 | 0.8693 | 32600 | 0.9089 |
|
215 |
+
| 0.8701 | 0.8747 | 32800 | 0.9087 |
|
216 |
+
| 0.9566 | 0.88 | 33000 | 0.9084 |
|
217 |
+
| 0.9591 | 0.8853 | 33200 | 0.9082 |
|
218 |
+
| 0.8082 | 0.8907 | 33400 | 0.9080 |
|
219 |
+
| 0.9117 | 0.896 | 33600 | 0.9078 |
|
220 |
+
| 0.8463 | 0.9013 | 33800 | 0.9077 |
|
221 |
+
| 0.9023 | 0.9067 | 34000 | 0.9075 |
|
222 |
+
| 0.9993 | 0.912 | 34200 | 0.9073 |
|
223 |
+
| 0.9258 | 0.9173 | 34400 | 0.9072 |
|
224 |
+
| 0.9564 | 0.9227 | 34600 | 0.9071 |
|
225 |
+
| 0.8713 | 0.928 | 34800 | 0.9070 |
|
226 |
+
| 0.973 | 0.9333 | 35000 | 0.9069 |
|
227 |
+
| 0.9323 | 0.9387 | 35200 | 0.9068 |
|
228 |
+
| 0.9408 | 0.944 | 35400 | 0.9068 |
|
229 |
+
| 0.9596 | 0.9493 | 35600 | 0.9067 |
|
230 |
+
| 1.0151 | 0.9547 | 35800 | 0.9067 |
|
231 |
+
| 0.8714 | 0.96 | 36000 | 0.9066 |
|
232 |
+
| 0.9274 | 0.9653 | 36200 | 0.9066 |
|
233 |
+
| 0.9182 | 0.9707 | 36400 | 0.9066 |
|
234 |
+
| 0.984 | 0.976 | 36600 | 0.9065 |
|
235 |
+
| 0.9376 | 0.9813 | 36800 | 0.9065 |
|
236 |
+
| 0.8816 | 0.9867 | 37000 | 0.9065 |
|
237 |
+
| 0.9195 | 0.992 | 37200 | 0.9065 |
|
238 |
+
| 0.9351 | 0.9973 | 37400 | 0.9065 |
|
239 |
+
|
240 |
+
|
241 |
+
### Framework versions
|
242 |
+
|
243 |
+
- PEFT 0.12.0
|
244 |
+
- Transformers 4.47.0
|
245 |
+
- Pytorch 2.5.1+cu124
|
246 |
+
- Datasets 3.0.0
|
247 |
+
- Tokenizers 0.21.0
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 671149168
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:736870a558c6f00ad3bf41dacc339e7cf86d17309f0b8a45b7dc61e9acc83d93
|
3 |
size 671149168
|