--- base_model: google/vit-base-patch16-224-in21k library_name: peft license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: model-checkpoints results: [] --- # model-checkpoints This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1486 - Accuracy: 0.959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.3816 | 0.9577 | 17 | 0.2448 | 0.941 | | 0.1642 | 1.9718 | 35 | 0.1770 | 0.943 | | 0.0808 | 2.9859 | 53 | 0.1486 | 0.959 | | 0.0509 | 4.0 | 71 | 0.1547 | 0.954 | | 0.0364 | 4.7887 | 85 | 0.1532 | 0.958 | ### Framework versions - PEFT 0.12.0 - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1