stochastic commited on
Commit
8df87a4
·
1 Parent(s): fa68990

Upload my first PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -253.23 +/- 66.77
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>", "_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>", "forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f900ce21600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653320425.5415134, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAetQ8vhksoD/52Ci/vPD6vm27ArzrjyG+AAAAAAAAAADm84A9RcWxP12o9T1qcY2+WbzcPRvx/TwAAAAAAAAAADPLy73mBJM/bveJvumoDb9gVh290j0CvgAAAAAAAAAAM6etvPYmUTsVIs4+c7FnvyxO5755ijU/AACAPwAAAAAABEU9KCa9PwPvCD5PUpK9in84vYtc7z0AAAAAAAAAACD3kj5MPCc//nYDPxWvhL821H88VVZRPQAAAAAAAAAAQL4yvmTYiT8QUlC+DtLivhDNir3aU4E8AAAAAAAAAACmj4i9MTypP3RcL78tpM6+sAWFPeCqwT0AAAAAAAAAAEDOpj1hzZk/bia0PgVkE7/gVbo9r2gMPgAAAAAAAAAADafOvf/P8z6iIQY+P6qCv38HA7+BAaM+AAAAAAAAAABlAfC+JJUxPNNtX74SXX+/RN3YvjDFJL4AAAAAAAAAAJrkVT2SZr0/jczhPs/BPj76gLy8uvE3PAAAAAAAAAAAfl+BvjOuUD+vbie/2+FBv0lWwr2bR/29AAAAAAAAAADm5H6+M4FoP+B8477bahS/CRS4Pfs0rr0AAAAAAAAAACNm8b6Mous+dJHFvo23Wb8Snrq+pLGtvQAAAAAAAAAAMzNKugectD8O/EQ7Xd5ivXWdirtTz4y9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1zBD44m7YMCUhpRSlIwBbJRLY4wBdJRHQFIXu4wyqMp1fZQoaAZoCWgPQwhqpnud1NFNwJSGlFKUaBVLhGgWR0BSHPT1CgK4dX2UKGgGaAloD0MI9DXLZaPBTcCUhpRSlGgVS21oFkdAUiBVQyhzvXV9lChoBmgJaA9DCGx7uyU5Hk7AlIaUUpRoFUtjaBZHQFIkF9KEnLJ1fZQoaAZoCWgPQwh+cD51rLNRwJSGlFKUaBVLYmgWR0BSJWgWac7RdX2UKGgGaAloD0MIDW5rC88wUcCUhpRSlGgVS4loFkdAUiY+/xlQM3V9lChoBmgJaA9DCMYxkj1Cc1PAlIaUUpRoFUtIaBZHQFInZdOZb6h1fZQoaAZoCWgPQwiY+nlTkdBOwJSGlFKUaBVLb2gWR0BSJ+DrZ8KHdX2UKGgGaAloD0MIfAxWnGoWUsCUhpRSlGgVS0doFkdAUimV5a/yoXV9lChoBmgJaA9DCC3pKAezp0bAlIaUUpRoFUuNaBZHQFIq47A+IM11fZQoaAZoCWgPQwgYk/5eCpdPwJSGlFKUaBVLfWgWR0BSOJbt7a7FdX2UKGgGaAloD0MI+MPPfw/OUcCUhpRSlGgVS09oFkdAUjfI+4b0e3V9lChoBmgJaA9DCBfVIqKYOETAlIaUUpRoFUuSaBZHQFI5eoUBXCF1fZQoaAZoCWgPQwi/KaxUUFVYwJSGlFKUaBVLaWgWR0BSOskIHC40dX2UKGgGaAloD0MI/dmPFJEfRcCUhpRSlGgVS0hoFkdAUj09ovi97HV9lChoBmgJaA9DCLhzYaQXolPAlIaUUpRoFUt6aBZHQFI+idJ8OTd1fZQoaAZoCWgPQwj2RNeFH+tdwJSGlFKUaBVLVmgWR0BSP7zPKMefdX2UKGgGaAloD0MI4EkLl1XQUcCUhpRSlGgVS01oFkdAUkgpDu0CzXV9lChoBmgJaA9DCHL75ZMVOULAlIaUUpRoFUuUaBZHQFJJnO0LMLZ1fZQoaAZoCWgPQwiIf9jSoxpZwJSGlFKUaBVLamgWR0BSUHMhX8wYdX2UKGgGaAloD0MIh1J7EW3bWcCUhpRSlGgVS2hoFkdAUlB0hePaMHV9lChoBmgJaA9DCNAPI4RHP1FAlIaUUpRoFU3oA2gWR0BSUaya/h2odX2UKGgGaAloD0MIhJ7Nqs9HWcCUhpRSlGgVS3NoFkdAUlSz7di2D3V9lChoBmgJaA9DCOy+Y3js00XAlIaUUpRoFUuBaBZHQFJWFy7wrlN1fZQoaAZoCWgPQwhZFkz8USdcwJSGlFKUaBVLW2gWR0BSWrY9Pk7wdX2UKGgGaAloD0MIiC6ob5mwU8CUhpRSlGgVS4FoFkdAUlrhky1uznV9lChoBmgJaA9DCHNJ1XYTbkPAlIaUUpRoFUtTaBZHQFJbJbdJrcl1fZQoaAZoCWgPQwhE+u3rwPVOwJSGlFKUaBVLXmgWR0BSXz0+TvAodX2UKGgGaAloD0MIdXgI46eHU8CUhpRSlGgVS21oFkdAUl5iobXHznV9lChoBmgJaA9DCNhGPNnNtEbAlIaUUpRoFUtwaBZHQFJgLrHEMsp1fZQoaAZoCWgPQwiQgqeQK7UvwJSGlFKUaBVLZWgWR0BSYa2SdOIqdX2UKGgGaAloD0MIwTqOHypFVcCUhpRSlGgVS6NoFkdAUmJXU6PsA3V9lChoBmgJaA9DCIxLVdriFkXAlIaUUpRoFUt1aBZHQFJiyE+Pikx1fZQoaAZoCWgPQwggC9EhcIJMwJSGlFKUaBVLTWgWR0BSZc8DB/I9dX2UKGgGaAloD0MIPQrXo3BPWcCUhpRSlGgVS1NoFkdAUmfHMlkYoHV9lChoBmgJaA9DCHoaMEj6OV3AlIaUUpRoFUtyaBZHQFJqUUwi7kJ1fZQoaAZoCWgPQwjt8xjlmWdWwJSGlFKUaBVLV2gWR0BSa9gSeyzHdX2UKGgGaAloD0MIYK3aNSGCYsCUhpRSlGgVS4NoFkdAUm8j2SMcZXV9lChoBmgJaA9DCHnou1vZyWrAlIaUUpRoFUt1aBZHQFJvwco6S1V1fZQoaAZoCWgPQwiUUPpCyBtbwJSGlFKUaBVLWWgWR0BScjd56dDqdX2UKGgGaAloD0MIev8fJ0wRWcCUhpRSlGgVS2doFkdAUnF5UtI07HV9lChoBmgJaA9DCOknnN1aBE/AlIaUUpRoFUtLaBZHQFJx0dzXBgx1fZQoaAZoCWgPQwjU1/M1y+lJwJSGlFKUaBVLWGgWR0BSdfcFhXr/dX2UKGgGaAloD0MIE2BY/nyzT8CUhpRSlGgVS3FoFkdAUniQtBfKIXV9lChoBmgJaA9DCHVyhuKOZFzAlIaUUpRoFUthaBZHQFJ5M7U5MlF1fZQoaAZoCWgPQwjGh9nLtphYwJSGlFKUaBVLTmgWR0BSei/wiJO4dX2UKGgGaAloD0MILbXeb7RVTMCUhpRSlGgVS2JoFkdAUnrzGxUvPHV9lChoBmgJaA9DCPGbwkoFoFbAlIaUUpRoFUt7aBZHQFJ7ZRbbDdh1fZQoaAZoCWgPQwjpmV5iLNsqwJSGlFKUaBVLYGgWR0BSe5R8+iaidX2UKGgGaAloD0MIL4UHza6pTsCUhpRSlGgVS1RoFkdAUn2kgwGnoHV9lChoBmgJaA9DCGsPe6GAjFbAlIaUUpRoFUtQaBZHQFKAN2C/XXl1fZQoaAZoCWgPQwhZ/RGGAVtBwJSGlFKUaBVLWGgWR0BSgN/SYw7DdX2UKGgGaAloD0MIjbYqiezWXcCUhpRSlGgVS4FoFkdAUoNwDNhVl3V9lChoBmgJaA9DCICcMGE0OljAlIaUUpRoFUtQaBZHQFKDt+CsfaJ1fZQoaAZoCWgPQwgVjbW/s3pRwJSGlFKUaBVLX2gWR0BSiYWDYh+wdX2UKGgGaAloD0MImE2AYfkZRsCUhpRSlGgVS0ZoFkdAUo0eNkvsaHV9lChoBmgJaA9DCHpW0opvtkbAlIaUUpRoFUtuaBZHQFKOQDV6NVB1fZQoaAZoCWgPQwi9xi5RvelJwJSGlFKUaBVLWmgWR0BSj4pDu0CzdX2UKGgGaAloD0MIoMA7+fR7WsCUhpRSlGgVS3RoFkdAUo+Mju8brHV9lChoBmgJaA9DCBpOmZtvs1HAlIaUUpRoFUtYaBZHQFKQ0gr6LwZ1fZQoaAZoCWgPQwhfl+E/3aw/wJSGlFKUaBVLXmgWR0BSkWf9P1tgdX2UKGgGaAloD0MITaJe8GmqO8CUhpRSlGgVS1loFkdAUpI8B+4LC3V9lChoBmgJaA9DCH12wHXFG1DAlIaUUpRoFUtHaBZHQFKS5f+jua51fZQoaAZoCWgPQwiA0lCjkBBuwJSGlFKUaBVLjGgWR0BSk8XBP9DQdX2UKGgGaAloD0MIryXkg56ROMCUhpRSlGgVS05oFkdAUpUmw7kn1HV9lChoBmgJaA9DCIv7j0yHukvAlIaUUpRoFUtGaBZHQFKV/5+H8CR1fZQoaAZoCWgPQwjLSSh9ISxOwJSGlFKUaBVLUWgWR0BSmF3MY/FBdX2UKGgGaAloD0MIavXVVYHAVMCUhpRSlGgVS6BoFkdAUp7/zasZHnV9lChoBmgJaA9DCPNV8rG7N1bAlIaUUpRoFUuBaBZHQFKe1vES/TN1fZQoaAZoCWgPQwjTa7OxEplLwJSGlFKUaBVLkGgWR0BSn+Z5Rjz7dX2UKGgGaAloD0MIkunQ6XmVUMCUhpRSlGgVS0NoFkdAUqJeVs1sL3V9lChoBmgJaA9DCGMMrOP4xlLAlIaUUpRoFUtPaBZHQFKmb7CSA6N1fZQoaAZoCWgPQwjJOhxdpXtSwJSGlFKUaBVLcWgWR0BSpvqPfbbldX2UKGgGaAloD0MIdnCwNzHwRMCUhpRSlGgVS1NoFkdAUqm0b961LXV9lChoBmgJaA9DCAEvM2yUTU7AlIaUUpRoFUt8aBZHQFKuSZSeiBZ1fZQoaAZoCWgPQwjYD7HBwq9KwJSGlFKUaBVLVGgWR0BSrxK15Sm7dX2UKGgGaAloD0MI1H0AUptMZcCUhpRSlGgVS3toFkdAUrC68QI2O3V9lChoBmgJaA9DCKUUdHtJJFHAlIaUUpRoFUuMaBZHQFK0G9Htnf51fZQoaAZoCWgPQwhslPWbiek2wJSGlFKUaBVLemgWR0BSs+l0o0AMdX2UKGgGaAloD0MINPPkmgIhScCUhpRSlGgVS4ZoFkdAUrTgYP5HmXV9lChoBmgJaA9DCGIUBI9vZ0fAlIaUUpRoFUtMaBZHQFK1HOryUcJ1fZQoaAZoCWgPQwjxvb9Be3k4wJSGlFKUaBVLi2gWR0BStPmozeoDdX2UKGgGaAloD0MI4X7AAwOFWcCUhpRSlGgVS4hoFkdAUrpgx8D0UXV9lChoBmgJaA9DCNE8gEV+8U/AlIaUUpRoFUulaBZHQFLBfthNM491fZQoaAZoCWgPQwjFjPD2ILFXwJSGlFKUaBVLgGgWR0BSwdp/PPcBdX2UKGgGaAloD0MIf7+YLVkuUMCUhpRSlGgVS4VoFkdAUsPNr0rbxnV9lChoBmgJaA9DCPRqgNJQ3VXAlIaUUpRoFUtNaBZHQFLDp35eqrB1fZQoaAZoCWgPQwjswaT4+OZNwJSGlFKUaBVLaWgWR0BSxG34Kx9odX2UKGgGaAloD0MIEd+JWS/kQcCUhpRSlGgVS2BoFkdAUsRw6ySmqHV9lChoBmgJaA9DCEuxo3GoS07AlIaUUpRoFUtlaBZHQFLKZh8Yyft1fZQoaAZoCWgPQwhAv+/fvNBOwJSGlFKUaBVLg2gWR0BSyrjPv8ZUdX2UKGgGaAloD0MIJetwdJVmS8CUhpRSlGgVS5hoFkdAUswood+5OXV9lChoBmgJaA9DCKzGEtZGZ2PAlIaUUpRoFUtzaBZHQFLPWVeKKpF1fZQoaAZoCWgPQwip+wCkNpZWwJSGlFKUaBVLY2gWR0BSz0o0ALiNdX2UKGgGaAloD0MIU82spYDaQMCUhpRSlGgVS2toFkdAUtFvxYq5LHV9lChoBmgJaA9DCMjShy6oDFLAlIaUUpRoFUt0aBZHQFLS+mm+Cbt1fZQoaAZoCWgPQwhPQBNhw75TwJSGlFKUaBVLd2gWR0BS06XnhbW3dX2UKGgGaAloD0MI196nqtBNVMCUhpRSlGgVS31oFkdAUtZBIFvAGnV9lChoBmgJaA9DCAqDMo0mtUnAlIaUUpRoFUtQaBZHQFLW5WRzRx91fZQoaAZoCWgPQwgNjLysiX5QwJSGlFKUaBVLa2gWR0BS1wCbMHKPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
first_rl_ppo_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8032915e377b22a857e8200f8d43985f001b206f924b960900d5f8fb1bb51b89
3
+ size 144021
first_rl_ppo_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
first_rl_ppo_model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f900ce21600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 114688,
46
+ "_total_timesteps": 100000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653320425.5415134,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAetQ8vhksoD/52Ci/vPD6vm27ArzrjyG+AAAAAAAAAADm84A9RcWxP12o9T1qcY2+WbzcPRvx/TwAAAAAAAAAADPLy73mBJM/bveJvumoDb9gVh290j0CvgAAAAAAAAAAM6etvPYmUTsVIs4+c7FnvyxO5755ijU/AACAPwAAAAAABEU9KCa9PwPvCD5PUpK9in84vYtc7z0AAAAAAAAAACD3kj5MPCc//nYDPxWvhL821H88VVZRPQAAAAAAAAAAQL4yvmTYiT8QUlC+DtLivhDNir3aU4E8AAAAAAAAAACmj4i9MTypP3RcL78tpM6+sAWFPeCqwT0AAAAAAAAAAEDOpj1hzZk/bia0PgVkE7/gVbo9r2gMPgAAAAAAAAAADafOvf/P8z6iIQY+P6qCv38HA7+BAaM+AAAAAAAAAABlAfC+JJUxPNNtX74SXX+/RN3YvjDFJL4AAAAAAAAAAJrkVT2SZr0/jczhPs/BPj76gLy8uvE3PAAAAAAAAAAAfl+BvjOuUD+vbie/2+FBv0lWwr2bR/29AAAAAAAAAADm5H6+M4FoP+B8477bahS/CRS4Pfs0rr0AAAAAAAAAACNm8b6Mous+dJHFvo23Wb8Snrq+pLGtvQAAAAAAAAAAMzNKugectD8O/EQ7Xd5ivXWdirtTz4y9AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.1468799999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1zBD44m7YMCUhpRSlIwBbJRLY4wBdJRHQFIXu4wyqMp1fZQoaAZoCWgPQwhqpnud1NFNwJSGlFKUaBVLhGgWR0BSHPT1CgK4dX2UKGgGaAloD0MI9DXLZaPBTcCUhpRSlGgVS21oFkdAUiBVQyhzvXV9lChoBmgJaA9DCGx7uyU5Hk7AlIaUUpRoFUtjaBZHQFIkF9KEnLJ1fZQoaAZoCWgPQwh+cD51rLNRwJSGlFKUaBVLYmgWR0BSJWgWac7RdX2UKGgGaAloD0MIDW5rC88wUcCUhpRSlGgVS4loFkdAUiY+/xlQM3V9lChoBmgJaA9DCMYxkj1Cc1PAlIaUUpRoFUtIaBZHQFInZdOZb6h1fZQoaAZoCWgPQwiY+nlTkdBOwJSGlFKUaBVLb2gWR0BSJ+DrZ8KHdX2UKGgGaAloD0MIfAxWnGoWUsCUhpRSlGgVS0doFkdAUimV5a/yoXV9lChoBmgJaA9DCC3pKAezp0bAlIaUUpRoFUuNaBZHQFIq47A+IM11fZQoaAZoCWgPQwgYk/5eCpdPwJSGlFKUaBVLfWgWR0BSOJbt7a7FdX2UKGgGaAloD0MI+MPPfw/OUcCUhpRSlGgVS09oFkdAUjfI+4b0e3V9lChoBmgJaA9DCBfVIqKYOETAlIaUUpRoFUuSaBZHQFI5eoUBXCF1fZQoaAZoCWgPQwi/KaxUUFVYwJSGlFKUaBVLaWgWR0BSOskIHC40dX2UKGgGaAloD0MI/dmPFJEfRcCUhpRSlGgVS0hoFkdAUj09ovi97HV9lChoBmgJaA9DCLhzYaQXolPAlIaUUpRoFUt6aBZHQFI+idJ8OTd1fZQoaAZoCWgPQwj2RNeFH+tdwJSGlFKUaBVLVmgWR0BSP7zPKMefdX2UKGgGaAloD0MI4EkLl1XQUcCUhpRSlGgVS01oFkdAUkgpDu0CzXV9lChoBmgJaA9DCHL75ZMVOULAlIaUUpRoFUuUaBZHQFJJnO0LMLZ1fZQoaAZoCWgPQwiIf9jSoxpZwJSGlFKUaBVLamgWR0BSUHMhX8wYdX2UKGgGaAloD0MIh1J7EW3bWcCUhpRSlGgVS2hoFkdAUlB0hePaMHV9lChoBmgJaA9DCNAPI4RHP1FAlIaUUpRoFU3oA2gWR0BSUaya/h2odX2UKGgGaAloD0MIhJ7Nqs9HWcCUhpRSlGgVS3NoFkdAUlSz7di2D3V9lChoBmgJaA9DCOy+Y3js00XAlIaUUpRoFUuBaBZHQFJWFy7wrlN1fZQoaAZoCWgPQwhZFkz8USdcwJSGlFKUaBVLW2gWR0BSWrY9Pk7wdX2UKGgGaAloD0MIiC6ob5mwU8CUhpRSlGgVS4FoFkdAUlrhky1uznV9lChoBmgJaA9DCHNJ1XYTbkPAlIaUUpRoFUtTaBZHQFJbJbdJrcl1fZQoaAZoCWgPQwhE+u3rwPVOwJSGlFKUaBVLXmgWR0BSXz0+TvAodX2UKGgGaAloD0MIdXgI46eHU8CUhpRSlGgVS21oFkdAUl5iobXHznV9lChoBmgJaA9DCNhGPNnNtEbAlIaUUpRoFUtwaBZHQFJgLrHEMsp1fZQoaAZoCWgPQwiQgqeQK7UvwJSGlFKUaBVLZWgWR0BSYa2SdOIqdX2UKGgGaAloD0MIwTqOHypFVcCUhpRSlGgVS6NoFkdAUmJXU6PsA3V9lChoBmgJaA9DCIxLVdriFkXAlIaUUpRoFUt1aBZHQFJiyE+Pikx1fZQoaAZoCWgPQwggC9EhcIJMwJSGlFKUaBVLTWgWR0BSZc8DB/I9dX2UKGgGaAloD0MIPQrXo3BPWcCUhpRSlGgVS1NoFkdAUmfHMlkYoHV9lChoBmgJaA9DCHoaMEj6OV3AlIaUUpRoFUtyaBZHQFJqUUwi7kJ1fZQoaAZoCWgPQwjt8xjlmWdWwJSGlFKUaBVLV2gWR0BSa9gSeyzHdX2UKGgGaAloD0MIYK3aNSGCYsCUhpRSlGgVS4NoFkdAUm8j2SMcZXV9lChoBmgJaA9DCHnou1vZyWrAlIaUUpRoFUt1aBZHQFJvwco6S1V1fZQoaAZoCWgPQwiUUPpCyBtbwJSGlFKUaBVLWWgWR0BScjd56dDqdX2UKGgGaAloD0MIev8fJ0wRWcCUhpRSlGgVS2doFkdAUnF5UtI07HV9lChoBmgJaA9DCOknnN1aBE/AlIaUUpRoFUtLaBZHQFJx0dzXBgx1fZQoaAZoCWgPQwjU1/M1y+lJwJSGlFKUaBVLWGgWR0BSdfcFhXr/dX2UKGgGaAloD0MIE2BY/nyzT8CUhpRSlGgVS3FoFkdAUniQtBfKIXV9lChoBmgJaA9DCHVyhuKOZFzAlIaUUpRoFUthaBZHQFJ5M7U5MlF1fZQoaAZoCWgPQwjGh9nLtphYwJSGlFKUaBVLTmgWR0BSei/wiJO4dX2UKGgGaAloD0MILbXeb7RVTMCUhpRSlGgVS2JoFkdAUnrzGxUvPHV9lChoBmgJaA9DCPGbwkoFoFbAlIaUUpRoFUt7aBZHQFJ7ZRbbDdh1fZQoaAZoCWgPQwjpmV5iLNsqwJSGlFKUaBVLYGgWR0BSe5R8+iaidX2UKGgGaAloD0MIL4UHza6pTsCUhpRSlGgVS1RoFkdAUn2kgwGnoHV9lChoBmgJaA9DCGsPe6GAjFbAlIaUUpRoFUtQaBZHQFKAN2C/XXl1fZQoaAZoCWgPQwhZ/RGGAVtBwJSGlFKUaBVLWGgWR0BSgN/SYw7DdX2UKGgGaAloD0MIjbYqiezWXcCUhpRSlGgVS4FoFkdAUoNwDNhVl3V9lChoBmgJaA9DCICcMGE0OljAlIaUUpRoFUtQaBZHQFKDt+CsfaJ1fZQoaAZoCWgPQwgVjbW/s3pRwJSGlFKUaBVLX2gWR0BSiYWDYh+wdX2UKGgGaAloD0MImE2AYfkZRsCUhpRSlGgVS0ZoFkdAUo0eNkvsaHV9lChoBmgJaA9DCHpW0opvtkbAlIaUUpRoFUtuaBZHQFKOQDV6NVB1fZQoaAZoCWgPQwi9xi5RvelJwJSGlFKUaBVLWmgWR0BSj4pDu0CzdX2UKGgGaAloD0MIoMA7+fR7WsCUhpRSlGgVS3RoFkdAUo+Mju8brHV9lChoBmgJaA9DCBpOmZtvs1HAlIaUUpRoFUtYaBZHQFKQ0gr6LwZ1fZQoaAZoCWgPQwhfl+E/3aw/wJSGlFKUaBVLXmgWR0BSkWf9P1tgdX2UKGgGaAloD0MITaJe8GmqO8CUhpRSlGgVS1loFkdAUpI8B+4LC3V9lChoBmgJaA9DCH12wHXFG1DAlIaUUpRoFUtHaBZHQFKS5f+jua51fZQoaAZoCWgPQwiA0lCjkBBuwJSGlFKUaBVLjGgWR0BSk8XBP9DQdX2UKGgGaAloD0MIryXkg56ROMCUhpRSlGgVS05oFkdAUpUmw7kn1HV9lChoBmgJaA9DCIv7j0yHukvAlIaUUpRoFUtGaBZHQFKV/5+H8CR1fZQoaAZoCWgPQwjLSSh9ISxOwJSGlFKUaBVLUWgWR0BSmF3MY/FBdX2UKGgGaAloD0MIavXVVYHAVMCUhpRSlGgVS6BoFkdAUp7/zasZHnV9lChoBmgJaA9DCPNV8rG7N1bAlIaUUpRoFUuBaBZHQFKe1vES/TN1fZQoaAZoCWgPQwjTa7OxEplLwJSGlFKUaBVLkGgWR0BSn+Z5Rjz7dX2UKGgGaAloD0MIkunQ6XmVUMCUhpRSlGgVS0NoFkdAUqJeVs1sL3V9lChoBmgJaA9DCGMMrOP4xlLAlIaUUpRoFUtPaBZHQFKmb7CSA6N1fZQoaAZoCWgPQwjJOhxdpXtSwJSGlFKUaBVLcWgWR0BSpvqPfbbldX2UKGgGaAloD0MIdnCwNzHwRMCUhpRSlGgVS1NoFkdAUqm0b961LXV9lChoBmgJaA9DCAEvM2yUTU7AlIaUUpRoFUt8aBZHQFKuSZSeiBZ1fZQoaAZoCWgPQwjYD7HBwq9KwJSGlFKUaBVLVGgWR0BSrxK15Sm7dX2UKGgGaAloD0MI1H0AUptMZcCUhpRSlGgVS3toFkdAUrC68QI2O3V9lChoBmgJaA9DCKUUdHtJJFHAlIaUUpRoFUuMaBZHQFK0G9Htnf51fZQoaAZoCWgPQwhslPWbiek2wJSGlFKUaBVLemgWR0BSs+l0o0AMdX2UKGgGaAloD0MINPPkmgIhScCUhpRSlGgVS4ZoFkdAUrTgYP5HmXV9lChoBmgJaA9DCGIUBI9vZ0fAlIaUUpRoFUtMaBZHQFK1HOryUcJ1fZQoaAZoCWgPQwjxvb9Be3k4wJSGlFKUaBVLi2gWR0BStPmozeoDdX2UKGgGaAloD0MI4X7AAwOFWcCUhpRSlGgVS4hoFkdAUrpgx8D0UXV9lChoBmgJaA9DCNE8gEV+8U/AlIaUUpRoFUulaBZHQFLBfthNM491fZQoaAZoCWgPQwjFjPD2ILFXwJSGlFKUaBVLgGgWR0BSwdp/PPcBdX2UKGgGaAloD0MIf7+YLVkuUMCUhpRSlGgVS4VoFkdAUsPNr0rbxnV9lChoBmgJaA9DCPRqgNJQ3VXAlIaUUpRoFUtNaBZHQFLDp35eqrB1fZQoaAZoCWgPQwjswaT4+OZNwJSGlFKUaBVLaWgWR0BSxG34Kx9odX2UKGgGaAloD0MIEd+JWS/kQcCUhpRSlGgVS2BoFkdAUsRw6ySmqHV9lChoBmgJaA9DCEuxo3GoS07AlIaUUpRoFUtlaBZHQFLKZh8Yyft1fZQoaAZoCWgPQwhAv+/fvNBOwJSGlFKUaBVLg2gWR0BSyrjPv8ZUdX2UKGgGaAloD0MIJetwdJVmS8CUhpRSlGgVS5hoFkdAUswood+5OXV9lChoBmgJaA9DCKzGEtZGZ2PAlIaUUpRoFUtzaBZHQFLPWVeKKpF1fZQoaAZoCWgPQwip+wCkNpZWwJSGlFKUaBVLY2gWR0BSz0o0ALiNdX2UKGgGaAloD0MIU82spYDaQMCUhpRSlGgVS2toFkdAUtFvxYq5LHV9lChoBmgJaA9DCMjShy6oDFLAlIaUUpRoFUt0aBZHQFLS+mm+Cbt1fZQoaAZoCWgPQwhPQBNhw75TwJSGlFKUaBVLd2gWR0BS06XnhbW3dX2UKGgGaAloD0MI196nqtBNVMCUhpRSlGgVS31oFkdAUtZBIFvAGnV9lChoBmgJaA9DCAqDMo0mtUnAlIaUUpRoFUtQaBZHQFLW5WRzRx91fZQoaAZoCWgPQwgNjLysiX5QwJSGlFKUaBVLa2gWR0BS1wCbMHKPdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 28,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
first_rl_ppo_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70e31598a45f02c724d1863293ef777516e98870f47306da9489e12faf0f1e5
3
+ size 84829
first_rl_ppo_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e4a489123d7962784645b7fd1345f5d3ac95274c8f929551db8984309cbeb77
3
+ size 43201
first_rl_ppo_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_rl_ppo_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:480400e62c590aa32929353971977191ed81b1f63ab46f7884ac179c9a60af6e
3
+ size 184752
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -253.2283852959168, "std_reward": 66.77114890222038, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T15:43:08.614209"}