stochastic
commited on
Commit
·
8df87a4
1
Parent(s):
fa68990
Upload my first PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- first_rl_ppo_model.zip +3 -0
- first_rl_ppo_model/_stable_baselines3_version +1 -0
- first_rl_ppo_model/data +94 -0
- first_rl_ppo_model/policy.optimizer.pth +3 -0
- first_rl_ppo_model/policy.pth +3 -0
- first_rl_ppo_model/pytorch_variables.pth +3 -0
- first_rl_ppo_model/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -253.23 +/- 66.77
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>", "_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>", "forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f900ce21600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653320425.5415134, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAetQ8vhksoD/52Ci/vPD6vm27ArzrjyG+AAAAAAAAAADm84A9RcWxP12o9T1qcY2+WbzcPRvx/TwAAAAAAAAAADPLy73mBJM/bveJvumoDb9gVh290j0CvgAAAAAAAAAAM6etvPYmUTsVIs4+c7FnvyxO5755ijU/AACAPwAAAAAABEU9KCa9PwPvCD5PUpK9in84vYtc7z0AAAAAAAAAACD3kj5MPCc//nYDPxWvhL821H88VVZRPQAAAAAAAAAAQL4yvmTYiT8QUlC+DtLivhDNir3aU4E8AAAAAAAAAACmj4i9MTypP3RcL78tpM6+sAWFPeCqwT0AAAAAAAAAAEDOpj1hzZk/bia0PgVkE7/gVbo9r2gMPgAAAAAAAAAADafOvf/P8z6iIQY+P6qCv38HA7+BAaM+AAAAAAAAAABlAfC+JJUxPNNtX74SXX+/RN3YvjDFJL4AAAAAAAAAAJrkVT2SZr0/jczhPs/BPj76gLy8uvE3PAAAAAAAAAAAfl+BvjOuUD+vbie/2+FBv0lWwr2bR/29AAAAAAAAAADm5H6+M4FoP+B8477bahS/CRS4Pfs0rr0AAAAAAAAAACNm8b6Mous+dJHFvo23Wb8Snrq+pLGtvQAAAAAAAAAAMzNKugectD8O/EQ7Xd5ivXWdirtTz4y9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1zBD44m7YMCUhpRSlIwBbJRLY4wBdJRHQFIXu4wyqMp1fZQoaAZoCWgPQwhqpnud1NFNwJSGlFKUaBVLhGgWR0BSHPT1CgK4dX2UKGgGaAloD0MI9DXLZaPBTcCUhpRSlGgVS21oFkdAUiBVQyhzvXV9lChoBmgJaA9DCGx7uyU5Hk7AlIaUUpRoFUtjaBZHQFIkF9KEnLJ1fZQoaAZoCWgPQwh+cD51rLNRwJSGlFKUaBVLYmgWR0BSJWgWac7RdX2UKGgGaAloD0MIDW5rC88wUcCUhpRSlGgVS4loFkdAUiY+/xlQM3V9lChoBmgJaA9DCMYxkj1Cc1PAlIaUUpRoFUtIaBZHQFInZdOZb6h1fZQoaAZoCWgPQwiY+nlTkdBOwJSGlFKUaBVLb2gWR0BSJ+DrZ8KHdX2UKGgGaAloD0MIfAxWnGoWUsCUhpRSlGgVS0doFkdAUimV5a/yoXV9lChoBmgJaA9DCC3pKAezp0bAlIaUUpRoFUuNaBZHQFIq47A+IM11fZQoaAZoCWgPQwgYk/5eCpdPwJSGlFKUaBVLfWgWR0BSOJbt7a7FdX2UKGgGaAloD0MI+MPPfw/OUcCUhpRSlGgVS09oFkdAUjfI+4b0e3V9lChoBmgJaA9DCBfVIqKYOETAlIaUUpRoFUuSaBZHQFI5eoUBXCF1fZQoaAZoCWgPQwi/KaxUUFVYwJSGlFKUaBVLaWgWR0BSOskIHC40dX2UKGgGaAloD0MI/dmPFJEfRcCUhpRSlGgVS0hoFkdAUj09ovi97HV9lChoBmgJaA9DCLhzYaQXolPAlIaUUpRoFUt6aBZHQFI+idJ8OTd1fZQoaAZoCWgPQwj2RNeFH+tdwJSGlFKUaBVLVmgWR0BSP7zPKMefdX2UKGgGaAloD0MI4EkLl1XQUcCUhpRSlGgVS01oFkdAUkgpDu0CzXV9lChoBmgJaA9DCHL75ZMVOULAlIaUUpRoFUuUaBZHQFJJnO0LMLZ1fZQoaAZoCWgPQwiIf9jSoxpZwJSGlFKUaBVLamgWR0BSUHMhX8wYdX2UKGgGaAloD0MIh1J7EW3bWcCUhpRSlGgVS2hoFkdAUlB0hePaMHV9lChoBmgJaA9DCNAPI4RHP1FAlIaUUpRoFU3oA2gWR0BSUaya/h2odX2UKGgGaAloD0MIhJ7Nqs9HWcCUhpRSlGgVS3NoFkdAUlSz7di2D3V9lChoBmgJaA9DCOy+Y3js00XAlIaUUpRoFUuBaBZHQFJWFy7wrlN1fZQoaAZoCWgPQwhZFkz8USdcwJSGlFKUaBVLW2gWR0BSWrY9Pk7wdX2UKGgGaAloD0MIiC6ob5mwU8CUhpRSlGgVS4FoFkdAUlrhky1uznV9lChoBmgJaA9DCHNJ1XYTbkPAlIaUUpRoFUtTaBZHQFJbJbdJrcl1fZQoaAZoCWgPQwhE+u3rwPVOwJSGlFKUaBVLXmgWR0BSXz0+TvAodX2UKGgGaAloD0MIdXgI46eHU8CUhpRSlGgVS21oFkdAUl5iobXHznV9lChoBmgJaA9DCNhGPNnNtEbAlIaUUpRoFUtwaBZHQFJgLrHEMsp1fZQoaAZoCWgPQwiQgqeQK7UvwJSGlFKUaBVLZWgWR0BSYa2SdOIqdX2UKGgGaAloD0MIwTqOHypFVcCUhpRSlGgVS6NoFkdAUmJXU6PsA3V9lChoBmgJaA9DCIxLVdriFkXAlIaUUpRoFUt1aBZHQFJiyE+Pikx1fZQoaAZoCWgPQwggC9EhcIJMwJSGlFKUaBVLTWgWR0BSZc8DB/I9dX2UKGgGaAloD0MIPQrXo3BPWcCUhpRSlGgVS1NoFkdAUmfHMlkYoHV9lChoBmgJaA9DCHoaMEj6OV3AlIaUUpRoFUtyaBZHQFJqUUwi7kJ1fZQoaAZoCWgPQwjt8xjlmWdWwJSGlFKUaBVLV2gWR0BSa9gSeyzHdX2UKGgGaAloD0MIYK3aNSGCYsCUhpRSlGgVS4NoFkdAUm8j2SMcZXV9lChoBmgJaA9DCHnou1vZyWrAlIaUUpRoFUt1aBZHQFJvwco6S1V1fZQoaAZoCWgPQwiUUPpCyBtbwJSGlFKUaBVLWWgWR0BScjd56dDqdX2UKGgGaAloD0MIev8fJ0wRWcCUhpRSlGgVS2doFkdAUnF5UtI07HV9lChoBmgJaA9DCOknnN1aBE/AlIaUUpRoFUtLaBZHQFJx0dzXBgx1fZQoaAZoCWgPQwjU1/M1y+lJwJSGlFKUaBVLWGgWR0BSdfcFhXr/dX2UKGgGaAloD0MIE2BY/nyzT8CUhpRSlGgVS3FoFkdAUniQtBfKIXV9lChoBmgJaA9DCHVyhuKOZFzAlIaUUpRoFUthaBZHQFJ5M7U5MlF1fZQoaAZoCWgPQwjGh9nLtphYwJSGlFKUaBVLTmgWR0BSei/wiJO4dX2UKGgGaAloD0MILbXeb7RVTMCUhpRSlGgVS2JoFkdAUnrzGxUvPHV9lChoBmgJaA9DCPGbwkoFoFbAlIaUUpRoFUt7aBZHQFJ7ZRbbDdh1fZQoaAZoCWgPQwjpmV5iLNsqwJSGlFKUaBVLYGgWR0BSe5R8+iaidX2UKGgGaAloD0MIL4UHza6pTsCUhpRSlGgVS1RoFkdAUn2kgwGnoHV9lChoBmgJaA9DCGsPe6GAjFbAlIaUUpRoFUtQaBZHQFKAN2C/XXl1fZQoaAZoCWgPQwhZ/RGGAVtBwJSGlFKUaBVLWGgWR0BSgN/SYw7DdX2UKGgGaAloD0MIjbYqiezWXcCUhpRSlGgVS4FoFkdAUoNwDNhVl3V9lChoBmgJaA9DCICcMGE0OljAlIaUUpRoFUtQaBZHQFKDt+CsfaJ1fZQoaAZoCWgPQwgVjbW/s3pRwJSGlFKUaBVLX2gWR0BSiYWDYh+wdX2UKGgGaAloD0MImE2AYfkZRsCUhpRSlGgVS0ZoFkdAUo0eNkvsaHV9lChoBmgJaA9DCHpW0opvtkbAlIaUUpRoFUtuaBZHQFKOQDV6NVB1fZQoaAZoCWgPQwi9xi5RvelJwJSGlFKUaBVLWmgWR0BSj4pDu0CzdX2UKGgGaAloD0MIoMA7+fR7WsCUhpRSlGgVS3RoFkdAUo+Mju8brHV9lChoBmgJaA9DCBpOmZtvs1HAlIaUUpRoFUtYaBZHQFKQ0gr6LwZ1fZQoaAZoCWgPQwhfl+E/3aw/wJSGlFKUaBVLXmgWR0BSkWf9P1tgdX2UKGgGaAloD0MITaJe8GmqO8CUhpRSlGgVS1loFkdAUpI8B+4LC3V9lChoBmgJaA9DCH12wHXFG1DAlIaUUpRoFUtHaBZHQFKS5f+jua51fZQoaAZoCWgPQwiA0lCjkBBuwJSGlFKUaBVLjGgWR0BSk8XBP9DQdX2UKGgGaAloD0MIryXkg56ROMCUhpRSlGgVS05oFkdAUpUmw7kn1HV9lChoBmgJaA9DCIv7j0yHukvAlIaUUpRoFUtGaBZHQFKV/5+H8CR1fZQoaAZoCWgPQwjLSSh9ISxOwJSGlFKUaBVLUWgWR0BSmF3MY/FBdX2UKGgGaAloD0MIavXVVYHAVMCUhpRSlGgVS6BoFkdAUp7/zasZHnV9lChoBmgJaA9DCPNV8rG7N1bAlIaUUpRoFUuBaBZHQFKe1vES/TN1fZQoaAZoCWgPQwjTa7OxEplLwJSGlFKUaBVLkGgWR0BSn+Z5Rjz7dX2UKGgGaAloD0MIkunQ6XmVUMCUhpRSlGgVS0NoFkdAUqJeVs1sL3V9lChoBmgJaA9DCGMMrOP4xlLAlIaUUpRoFUtPaBZHQFKmb7CSA6N1fZQoaAZoCWgPQwjJOhxdpXtSwJSGlFKUaBVLcWgWR0BSpvqPfbbldX2UKGgGaAloD0MIdnCwNzHwRMCUhpRSlGgVS1NoFkdAUqm0b961LXV9lChoBmgJaA9DCAEvM2yUTU7AlIaUUpRoFUt8aBZHQFKuSZSeiBZ1fZQoaAZoCWgPQwjYD7HBwq9KwJSGlFKUaBVLVGgWR0BSrxK15Sm7dX2UKGgGaAloD0MI1H0AUptMZcCUhpRSlGgVS3toFkdAUrC68QI2O3V9lChoBmgJaA9DCKUUdHtJJFHAlIaUUpRoFUuMaBZHQFK0G9Htnf51fZQoaAZoCWgPQwhslPWbiek2wJSGlFKUaBVLemgWR0BSs+l0o0AMdX2UKGgGaAloD0MINPPkmgIhScCUhpRSlGgVS4ZoFkdAUrTgYP5HmXV9lChoBmgJaA9DCGIUBI9vZ0fAlIaUUpRoFUtMaBZHQFK1HOryUcJ1fZQoaAZoCWgPQwjxvb9Be3k4wJSGlFKUaBVLi2gWR0BStPmozeoDdX2UKGgGaAloD0MI4X7AAwOFWcCUhpRSlGgVS4hoFkdAUrpgx8D0UXV9lChoBmgJaA9DCNE8gEV+8U/AlIaUUpRoFUulaBZHQFLBfthNM491fZQoaAZoCWgPQwjFjPD2ILFXwJSGlFKUaBVLgGgWR0BSwdp/PPcBdX2UKGgGaAloD0MIf7+YLVkuUMCUhpRSlGgVS4VoFkdAUsPNr0rbxnV9lChoBmgJaA9DCPRqgNJQ3VXAlIaUUpRoFUtNaBZHQFLDp35eqrB1fZQoaAZoCWgPQwjswaT4+OZNwJSGlFKUaBVLaWgWR0BSxG34Kx9odX2UKGgGaAloD0MIEd+JWS/kQcCUhpRSlGgVS2BoFkdAUsRw6ySmqHV9lChoBmgJaA9DCEuxo3GoS07AlIaUUpRoFUtlaBZHQFLKZh8Yyft1fZQoaAZoCWgPQwhAv+/fvNBOwJSGlFKUaBVLg2gWR0BSyrjPv8ZUdX2UKGgGaAloD0MIJetwdJVmS8CUhpRSlGgVS5hoFkdAUswood+5OXV9lChoBmgJaA9DCKzGEtZGZ2PAlIaUUpRoFUtzaBZHQFLPWVeKKpF1fZQoaAZoCWgPQwip+wCkNpZWwJSGlFKUaBVLY2gWR0BSz0o0ALiNdX2UKGgGaAloD0MIU82spYDaQMCUhpRSlGgVS2toFkdAUtFvxYq5LHV9lChoBmgJaA9DCMjShy6oDFLAlIaUUpRoFUt0aBZHQFLS+mm+Cbt1fZQoaAZoCWgPQwhPQBNhw75TwJSGlFKUaBVLd2gWR0BS06XnhbW3dX2UKGgGaAloD0MI196nqtBNVMCUhpRSlGgVS31oFkdAUtZBIFvAGnV9lChoBmgJaA9DCAqDMo0mtUnAlIaUUpRoFUtQaBZHQFLW5WRzRx91fZQoaAZoCWgPQwgNjLysiX5QwJSGlFKUaBVLa2gWR0BS1wCbMHKPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_rl_ppo_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8032915e377b22a857e8200f8d43985f001b206f924b960900d5f8fb1bb51b89
|
3 |
+
size 144021
|
first_rl_ppo_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
first_rl_ppo_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f900ce4ed40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f900ce4edd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f900ce4ee60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f900ce4eef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f900ce4ef80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f900ce53050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f900ce530e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f900ce53170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f900ce53200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f900ce53290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f900ce53320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f900ce21600>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 114688,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1653320425.5415134,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAetQ8vhksoD/52Ci/vPD6vm27ArzrjyG+AAAAAAAAAADm84A9RcWxP12o9T1qcY2+WbzcPRvx/TwAAAAAAAAAADPLy73mBJM/bveJvumoDb9gVh290j0CvgAAAAAAAAAAM6etvPYmUTsVIs4+c7FnvyxO5755ijU/AACAPwAAAAAABEU9KCa9PwPvCD5PUpK9in84vYtc7z0AAAAAAAAAACD3kj5MPCc//nYDPxWvhL821H88VVZRPQAAAAAAAAAAQL4yvmTYiT8QUlC+DtLivhDNir3aU4E8AAAAAAAAAACmj4i9MTypP3RcL78tpM6+sAWFPeCqwT0AAAAAAAAAAEDOpj1hzZk/bia0PgVkE7/gVbo9r2gMPgAAAAAAAAAADafOvf/P8z6iIQY+P6qCv38HA7+BAaM+AAAAAAAAAABlAfC+JJUxPNNtX74SXX+/RN3YvjDFJL4AAAAAAAAAAJrkVT2SZr0/jczhPs/BPj76gLy8uvE3PAAAAAAAAAAAfl+BvjOuUD+vbie/2+FBv0lWwr2bR/29AAAAAAAAAADm5H6+M4FoP+B8477bahS/CRS4Pfs0rr0AAAAAAAAAACNm8b6Mous+dJHFvo23Wb8Snrq+pLGtvQAAAAAAAAAAMzNKugectD8O/EQ7Xd5ivXWdirtTz4y9AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.1468799999999999,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1zBD44m7YMCUhpRSlIwBbJRLY4wBdJRHQFIXu4wyqMp1fZQoaAZoCWgPQwhqpnud1NFNwJSGlFKUaBVLhGgWR0BSHPT1CgK4dX2UKGgGaAloD0MI9DXLZaPBTcCUhpRSlGgVS21oFkdAUiBVQyhzvXV9lChoBmgJaA9DCGx7uyU5Hk7AlIaUUpRoFUtjaBZHQFIkF9KEnLJ1fZQoaAZoCWgPQwh+cD51rLNRwJSGlFKUaBVLYmgWR0BSJWgWac7RdX2UKGgGaAloD0MIDW5rC88wUcCUhpRSlGgVS4loFkdAUiY+/xlQM3V9lChoBmgJaA9DCMYxkj1Cc1PAlIaUUpRoFUtIaBZHQFInZdOZb6h1fZQoaAZoCWgPQwiY+nlTkdBOwJSGlFKUaBVLb2gWR0BSJ+DrZ8KHdX2UKGgGaAloD0MIfAxWnGoWUsCUhpRSlGgVS0doFkdAUimV5a/yoXV9lChoBmgJaA9DCC3pKAezp0bAlIaUUpRoFUuNaBZHQFIq47A+IM11fZQoaAZoCWgPQwgYk/5eCpdPwJSGlFKUaBVLfWgWR0BSOJbt7a7FdX2UKGgGaAloD0MI+MPPfw/OUcCUhpRSlGgVS09oFkdAUjfI+4b0e3V9lChoBmgJaA9DCBfVIqKYOETAlIaUUpRoFUuSaBZHQFI5eoUBXCF1fZQoaAZoCWgPQwi/KaxUUFVYwJSGlFKUaBVLaWgWR0BSOskIHC40dX2UKGgGaAloD0MI/dmPFJEfRcCUhpRSlGgVS0hoFkdAUj09ovi97HV9lChoBmgJaA9DCLhzYaQXolPAlIaUUpRoFUt6aBZHQFI+idJ8OTd1fZQoaAZoCWgPQwj2RNeFH+tdwJSGlFKUaBVLVmgWR0BSP7zPKMefdX2UKGgGaAloD0MI4EkLl1XQUcCUhpRSlGgVS01oFkdAUkgpDu0CzXV9lChoBmgJaA9DCHL75ZMVOULAlIaUUpRoFUuUaBZHQFJJnO0LMLZ1fZQoaAZoCWgPQwiIf9jSoxpZwJSGlFKUaBVLamgWR0BSUHMhX8wYdX2UKGgGaAloD0MIh1J7EW3bWcCUhpRSlGgVS2hoFkdAUlB0hePaMHV9lChoBmgJaA9DCNAPI4RHP1FAlIaUUpRoFU3oA2gWR0BSUaya/h2odX2UKGgGaAloD0MIhJ7Nqs9HWcCUhpRSlGgVS3NoFkdAUlSz7di2D3V9lChoBmgJaA9DCOy+Y3js00XAlIaUUpRoFUuBaBZHQFJWFy7wrlN1fZQoaAZoCWgPQwhZFkz8USdcwJSGlFKUaBVLW2gWR0BSWrY9Pk7wdX2UKGgGaAloD0MIiC6ob5mwU8CUhpRSlGgVS4FoFkdAUlrhky1uznV9lChoBmgJaA9DCHNJ1XYTbkPAlIaUUpRoFUtTaBZHQFJbJbdJrcl1fZQoaAZoCWgPQwhE+u3rwPVOwJSGlFKUaBVLXmgWR0BSXz0+TvAodX2UKGgGaAloD0MIdXgI46eHU8CUhpRSlGgVS21oFkdAUl5iobXHznV9lChoBmgJaA9DCNhGPNnNtEbAlIaUUpRoFUtwaBZHQFJgLrHEMsp1fZQoaAZoCWgPQwiQgqeQK7UvwJSGlFKUaBVLZWgWR0BSYa2SdOIqdX2UKGgGaAloD0MIwTqOHypFVcCUhpRSlGgVS6NoFkdAUmJXU6PsA3V9lChoBmgJaA9DCIxLVdriFkXAlIaUUpRoFUt1aBZHQFJiyE+Pikx1fZQoaAZoCWgPQwggC9EhcIJMwJSGlFKUaBVLTWgWR0BSZc8DB/I9dX2UKGgGaAloD0MIPQrXo3BPWcCUhpRSlGgVS1NoFkdAUmfHMlkYoHV9lChoBmgJaA9DCHoaMEj6OV3AlIaUUpRoFUtyaBZHQFJqUUwi7kJ1fZQoaAZoCWgPQwjt8xjlmWdWwJSGlFKUaBVLV2gWR0BSa9gSeyzHdX2UKGgGaAloD0MIYK3aNSGCYsCUhpRSlGgVS4NoFkdAUm8j2SMcZXV9lChoBmgJaA9DCHnou1vZyWrAlIaUUpRoFUt1aBZHQFJvwco6S1V1fZQoaAZoCWgPQwiUUPpCyBtbwJSGlFKUaBVLWWgWR0BScjd56dDqdX2UKGgGaAloD0MIev8fJ0wRWcCUhpRSlGgVS2doFkdAUnF5UtI07HV9lChoBmgJaA9DCOknnN1aBE/AlIaUUpRoFUtLaBZHQFJx0dzXBgx1fZQoaAZoCWgPQwjU1/M1y+lJwJSGlFKUaBVLWGgWR0BSdfcFhXr/dX2UKGgGaAloD0MIE2BY/nyzT8CUhpRSlGgVS3FoFkdAUniQtBfKIXV9lChoBmgJaA9DCHVyhuKOZFzAlIaUUpRoFUthaBZHQFJ5M7U5MlF1fZQoaAZoCWgPQwjGh9nLtphYwJSGlFKUaBVLTmgWR0BSei/wiJO4dX2UKGgGaAloD0MILbXeb7RVTMCUhpRSlGgVS2JoFkdAUnrzGxUvPHV9lChoBmgJaA9DCPGbwkoFoFbAlIaUUpRoFUt7aBZHQFJ7ZRbbDdh1fZQoaAZoCWgPQwjpmV5iLNsqwJSGlFKUaBVLYGgWR0BSe5R8+iaidX2UKGgGaAloD0MIL4UHza6pTsCUhpRSlGgVS1RoFkdAUn2kgwGnoHV9lChoBmgJaA9DCGsPe6GAjFbAlIaUUpRoFUtQaBZHQFKAN2C/XXl1fZQoaAZoCWgPQwhZ/RGGAVtBwJSGlFKUaBVLWGgWR0BSgN/SYw7DdX2UKGgGaAloD0MIjbYqiezWXcCUhpRSlGgVS4FoFkdAUoNwDNhVl3V9lChoBmgJaA9DCICcMGE0OljAlIaUUpRoFUtQaBZHQFKDt+CsfaJ1fZQoaAZoCWgPQwgVjbW/s3pRwJSGlFKUaBVLX2gWR0BSiYWDYh+wdX2UKGgGaAloD0MImE2AYfkZRsCUhpRSlGgVS0ZoFkdAUo0eNkvsaHV9lChoBmgJaA9DCHpW0opvtkbAlIaUUpRoFUtuaBZHQFKOQDV6NVB1fZQoaAZoCWgPQwi9xi5RvelJwJSGlFKUaBVLWmgWR0BSj4pDu0CzdX2UKGgGaAloD0MIoMA7+fR7WsCUhpRSlGgVS3RoFkdAUo+Mju8brHV9lChoBmgJaA9DCBpOmZtvs1HAlIaUUpRoFUtYaBZHQFKQ0gr6LwZ1fZQoaAZoCWgPQwhfl+E/3aw/wJSGlFKUaBVLXmgWR0BSkWf9P1tgdX2UKGgGaAloD0MITaJe8GmqO8CUhpRSlGgVS1loFkdAUpI8B+4LC3V9lChoBmgJaA9DCH12wHXFG1DAlIaUUpRoFUtHaBZHQFKS5f+jua51fZQoaAZoCWgPQwiA0lCjkBBuwJSGlFKUaBVLjGgWR0BSk8XBP9DQdX2UKGgGaAloD0MIryXkg56ROMCUhpRSlGgVS05oFkdAUpUmw7kn1HV9lChoBmgJaA9DCIv7j0yHukvAlIaUUpRoFUtGaBZHQFKV/5+H8CR1fZQoaAZoCWgPQwjLSSh9ISxOwJSGlFKUaBVLUWgWR0BSmF3MY/FBdX2UKGgGaAloD0MIavXVVYHAVMCUhpRSlGgVS6BoFkdAUp7/zasZHnV9lChoBmgJaA9DCPNV8rG7N1bAlIaUUpRoFUuBaBZHQFKe1vES/TN1fZQoaAZoCWgPQwjTa7OxEplLwJSGlFKUaBVLkGgWR0BSn+Z5Rjz7dX2UKGgGaAloD0MIkunQ6XmVUMCUhpRSlGgVS0NoFkdAUqJeVs1sL3V9lChoBmgJaA9DCGMMrOP4xlLAlIaUUpRoFUtPaBZHQFKmb7CSA6N1fZQoaAZoCWgPQwjJOhxdpXtSwJSGlFKUaBVLcWgWR0BSpvqPfbbldX2UKGgGaAloD0MIdnCwNzHwRMCUhpRSlGgVS1NoFkdAUqm0b961LXV9lChoBmgJaA9DCAEvM2yUTU7AlIaUUpRoFUt8aBZHQFKuSZSeiBZ1fZQoaAZoCWgPQwjYD7HBwq9KwJSGlFKUaBVLVGgWR0BSrxK15Sm7dX2UKGgGaAloD0MI1H0AUptMZcCUhpRSlGgVS3toFkdAUrC68QI2O3V9lChoBmgJaA9DCKUUdHtJJFHAlIaUUpRoFUuMaBZHQFK0G9Htnf51fZQoaAZoCWgPQwhslPWbiek2wJSGlFKUaBVLemgWR0BSs+l0o0AMdX2UKGgGaAloD0MINPPkmgIhScCUhpRSlGgVS4ZoFkdAUrTgYP5HmXV9lChoBmgJaA9DCGIUBI9vZ0fAlIaUUpRoFUtMaBZHQFK1HOryUcJ1fZQoaAZoCWgPQwjxvb9Be3k4wJSGlFKUaBVLi2gWR0BStPmozeoDdX2UKGgGaAloD0MI4X7AAwOFWcCUhpRSlGgVS4hoFkdAUrpgx8D0UXV9lChoBmgJaA9DCNE8gEV+8U/AlIaUUpRoFUulaBZHQFLBfthNM491fZQoaAZoCWgPQwjFjPD2ILFXwJSGlFKUaBVLgGgWR0BSwdp/PPcBdX2UKGgGaAloD0MIf7+YLVkuUMCUhpRSlGgVS4VoFkdAUsPNr0rbxnV9lChoBmgJaA9DCPRqgNJQ3VXAlIaUUpRoFUtNaBZHQFLDp35eqrB1fZQoaAZoCWgPQwjswaT4+OZNwJSGlFKUaBVLaWgWR0BSxG34Kx9odX2UKGgGaAloD0MIEd+JWS/kQcCUhpRSlGgVS2BoFkdAUsRw6ySmqHV9lChoBmgJaA9DCEuxo3GoS07AlIaUUpRoFUtlaBZHQFLKZh8Yyft1fZQoaAZoCWgPQwhAv+/fvNBOwJSGlFKUaBVLg2gWR0BSyrjPv8ZUdX2UKGgGaAloD0MIJetwdJVmS8CUhpRSlGgVS5hoFkdAUswood+5OXV9lChoBmgJaA9DCKzGEtZGZ2PAlIaUUpRoFUtzaBZHQFLPWVeKKpF1fZQoaAZoCWgPQwip+wCkNpZWwJSGlFKUaBVLY2gWR0BSz0o0ALiNdX2UKGgGaAloD0MIU82spYDaQMCUhpRSlGgVS2toFkdAUtFvxYq5LHV9lChoBmgJaA9DCMjShy6oDFLAlIaUUpRoFUt0aBZHQFLS+mm+Cbt1fZQoaAZoCWgPQwhPQBNhw75TwJSGlFKUaBVLd2gWR0BS06XnhbW3dX2UKGgGaAloD0MI196nqtBNVMCUhpRSlGgVS31oFkdAUtZBIFvAGnV9lChoBmgJaA9DCAqDMo0mtUnAlIaUUpRoFUtQaBZHQFLW5WRzRx91fZQoaAZoCWgPQwgNjLysiX5QwJSGlFKUaBVLa2gWR0BS1wCbMHKPdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 28,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first_rl_ppo_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e70e31598a45f02c724d1863293ef777516e98870f47306da9489e12faf0f1e5
|
3 |
+
size 84829
|
first_rl_ppo_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e4a489123d7962784645b7fd1345f5d3ac95274c8f929551db8984309cbeb77
|
3 |
+
size 43201
|
first_rl_ppo_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_rl_ppo_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:480400e62c590aa32929353971977191ed81b1f63ab46f7884ac179c9a60af6e
|
3 |
+
size 184752
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -253.2283852959168, "std_reward": 66.77114890222038, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-23T15:43:08.614209"}
|