File size: 4,660 Bytes
9ab503d adf14b8 9ab503d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-large-finetuned-kinetics-finetuned-videomae-large-kitchen
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-large-finetuned-kinetics-finetuned-videomae-large-kitchen
This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6309
- Accuracy: 0.8900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 11100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 3.5158 | 0.02 | 222 | 3.6067 | 0.0588 |
| 2.8571 | 1.02 | 444 | 3.1445 | 0.3014 |
| 1.8854 | 2.02 | 666 | 2.3644 | 0.4607 |
| 1.5533 | 3.02 | 888 | 1.7967 | 0.5621 |
| 1.3935 | 4.02 | 1110 | 1.3755 | 0.6502 |
| 1.1722 | 5.02 | 1332 | 1.2232 | 0.7109 |
| 0.2896 | 6.02 | 1554 | 1.2859 | 0.6256 |
| 0.3166 | 7.02 | 1776 | 1.2910 | 0.6720 |
| 0.6902 | 8.02 | 1998 | 1.2702 | 0.6995 |
| 0.4193 | 9.02 | 2220 | 1.2087 | 0.7137 |
| 0.1889 | 10.02 | 2442 | 1.0500 | 0.7611 |
| 0.4502 | 11.02 | 2664 | 1.1647 | 0.7118 |
| 0.7703 | 12.02 | 2886 | 1.1037 | 0.7242 |
| 0.0957 | 13.02 | 3108 | 1.0967 | 0.7706 |
| 0.3202 | 14.02 | 3330 | 1.0479 | 0.7545 |
| 0.3634 | 15.02 | 3552 | 1.0714 | 0.8057 |
| 0.3883 | 16.02 | 3774 | 1.2323 | 0.7498 |
| 0.0322 | 17.02 | 3996 | 1.0504 | 0.7848 |
| 0.5108 | 18.02 | 4218 | 1.1356 | 0.7915 |
| 0.309 | 19.02 | 4440 | 1.1409 | 0.7592 |
| 0.56 | 20.02 | 4662 | 1.0828 | 0.7915 |
| 0.3675 | 21.02 | 4884 | 0.9154 | 0.8123 |
| 0.0076 | 22.02 | 5106 | 1.0974 | 0.8133 |
| 0.0451 | 23.02 | 5328 | 1.0361 | 0.8152 |
| 0.2558 | 24.02 | 5550 | 0.7830 | 0.8237 |
| 0.0125 | 25.02 | 5772 | 0.8728 | 0.8171 |
| 0.4184 | 26.02 | 5994 | 0.8413 | 0.8265 |
| 0.2566 | 27.02 | 6216 | 1.0644 | 0.8009 |
| 0.1257 | 28.02 | 6438 | 0.8641 | 0.8265 |
| 0.1326 | 29.02 | 6660 | 0.8444 | 0.8417 |
| 0.0436 | 30.02 | 6882 | 0.8615 | 0.8322 |
| 0.0408 | 31.02 | 7104 | 0.8075 | 0.8332 |
| 0.0316 | 32.02 | 7326 | 0.8699 | 0.8341 |
| 0.2235 | 33.02 | 7548 | 0.8151 | 0.8455 |
| 0.0079 | 34.02 | 7770 | 0.8099 | 0.8550 |
| 0.001 | 35.02 | 7992 | 0.8640 | 0.8370 |
| 0.0007 | 36.02 | 8214 | 0.7146 | 0.8483 |
| 0.464 | 37.02 | 8436 | 0.7917 | 0.8464 |
| 0.0005 | 38.02 | 8658 | 0.7239 | 0.8531 |
| 0.0004 | 39.02 | 8880 | 0.7702 | 0.8701 |
| 0.1705 | 40.02 | 9102 | 0.7543 | 0.8521 |
| 0.0039 | 41.02 | 9324 | 0.7456 | 0.8673 |
| 0.0168 | 42.02 | 9546 | 0.7255 | 0.8730 |
| 0.2615 | 43.02 | 9768 | 0.7453 | 0.8758 |
| 0.0004 | 44.02 | 9990 | 0.6824 | 0.8806 |
| 0.236 | 45.02 | 10212 | 0.6624 | 0.8825 |
| 0.0007 | 46.02 | 10434 | 0.6727 | 0.8815 |
| 0.0004 | 47.02 | 10656 | 0.6478 | 0.8863 |
| 0.268 | 48.02 | 10878 | 0.6309 | 0.8900 |
| 0.0025 | 49.02 | 11100 | 0.6284 | 0.8900 |
### Framework versions
- Transformers 4.33.2
- Pytorch 1.12.1+cu113
- Datasets 2.14.5
- Tokenizers 0.13.3
|