stellarator commited on
Commit
fae26a0
·
verified ·
1 Parent(s): d1abe4e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2545 -0
README.md ADDED
@@ -0,0 +1,2545 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - transformers.js
5
+ - transformers
6
+ - llama-cpp
7
+ - gguf-my-repo
8
+ license: apache-2.0
9
+ language:
10
+ - en
11
+ library_name: sentence-transformers
12
+ pipeline_tag: feature-extraction
13
+ base_model: mixedbread-ai/mxbai-embed-large-v1
14
+ model-index:
15
+ - name: mxbai-angle-large-v1
16
+ results:
17
+ - task:
18
+ type: Classification
19
+ dataset:
20
+ name: MTEB AmazonCounterfactualClassification (en)
21
+ type: mteb/amazon_counterfactual
22
+ config: en
23
+ split: test
24
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
25
+ metrics:
26
+ - type: accuracy
27
+ value: 75.044776119403
28
+ - type: ap
29
+ value: 37.7362433623053
30
+ - type: f1
31
+ value: 68.92736573359774
32
+ - task:
33
+ type: Classification
34
+ dataset:
35
+ name: MTEB AmazonPolarityClassification
36
+ type: mteb/amazon_polarity
37
+ config: default
38
+ split: test
39
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
40
+ metrics:
41
+ - type: accuracy
42
+ value: 93.84025000000001
43
+ - type: ap
44
+ value: 90.93190875404055
45
+ - type: f1
46
+ value: 93.8297833897293
47
+ - task:
48
+ type: Classification
49
+ dataset:
50
+ name: MTEB AmazonReviewsClassification (en)
51
+ type: mteb/amazon_reviews_multi
52
+ config: en
53
+ split: test
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ metrics:
56
+ - type: accuracy
57
+ value: 49.184
58
+ - type: f1
59
+ value: 48.74163227751588
60
+ - task:
61
+ type: Retrieval
62
+ dataset:
63
+ name: MTEB ArguAna
64
+ type: arguana
65
+ config: default
66
+ split: test
67
+ revision: None
68
+ metrics:
69
+ - type: map_at_1
70
+ value: 41.252
71
+ - type: map_at_10
72
+ value: 57.778
73
+ - type: map_at_100
74
+ value: 58.233000000000004
75
+ - type: map_at_1000
76
+ value: 58.23700000000001
77
+ - type: map_at_3
78
+ value: 53.449999999999996
79
+ - type: map_at_5
80
+ value: 56.376000000000005
81
+ - type: mrr_at_1
82
+ value: 41.679
83
+ - type: mrr_at_10
84
+ value: 57.92699999999999
85
+ - type: mrr_at_100
86
+ value: 58.389
87
+ - type: mrr_at_1000
88
+ value: 58.391999999999996
89
+ - type: mrr_at_3
90
+ value: 53.651
91
+ - type: mrr_at_5
92
+ value: 56.521
93
+ - type: ndcg_at_1
94
+ value: 41.252
95
+ - type: ndcg_at_10
96
+ value: 66.018
97
+ - type: ndcg_at_100
98
+ value: 67.774
99
+ - type: ndcg_at_1000
100
+ value: 67.84400000000001
101
+ - type: ndcg_at_3
102
+ value: 57.372
103
+ - type: ndcg_at_5
104
+ value: 62.646
105
+ - type: precision_at_1
106
+ value: 41.252
107
+ - type: precision_at_10
108
+ value: 9.189
109
+ - type: precision_at_100
110
+ value: 0.991
111
+ - type: precision_at_1000
112
+ value: 0.1
113
+ - type: precision_at_3
114
+ value: 22.902
115
+ - type: precision_at_5
116
+ value: 16.302
117
+ - type: recall_at_1
118
+ value: 41.252
119
+ - type: recall_at_10
120
+ value: 91.892
121
+ - type: recall_at_100
122
+ value: 99.14699999999999
123
+ - type: recall_at_1000
124
+ value: 99.644
125
+ - type: recall_at_3
126
+ value: 68.706
127
+ - type: recall_at_5
128
+ value: 81.50800000000001
129
+ - task:
130
+ type: Clustering
131
+ dataset:
132
+ name: MTEB ArxivClusteringP2P
133
+ type: mteb/arxiv-clustering-p2p
134
+ config: default
135
+ split: test
136
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
137
+ metrics:
138
+ - type: v_measure
139
+ value: 48.97294504317859
140
+ - task:
141
+ type: Clustering
142
+ dataset:
143
+ name: MTEB ArxivClusteringS2S
144
+ type: mteb/arxiv-clustering-s2s
145
+ config: default
146
+ split: test
147
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
148
+ metrics:
149
+ - type: v_measure
150
+ value: 42.98071077674629
151
+ - task:
152
+ type: Reranking
153
+ dataset:
154
+ name: MTEB AskUbuntuDupQuestions
155
+ type: mteb/askubuntudupquestions-reranking
156
+ config: default
157
+ split: test
158
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
159
+ metrics:
160
+ - type: map
161
+ value: 65.16477858490782
162
+ - type: mrr
163
+ value: 78.23583080508287
164
+ - task:
165
+ type: STS
166
+ dataset:
167
+ name: MTEB BIOSSES
168
+ type: mteb/biosses-sts
169
+ config: default
170
+ split: test
171
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
172
+ metrics:
173
+ - type: cos_sim_pearson
174
+ value: 89.6277629421789
175
+ - type: cos_sim_spearman
176
+ value: 88.4056288400568
177
+ - type: euclidean_pearson
178
+ value: 87.94871847578163
179
+ - type: euclidean_spearman
180
+ value: 88.4056288400568
181
+ - type: manhattan_pearson
182
+ value: 87.73271254229648
183
+ - type: manhattan_spearman
184
+ value: 87.91826833762677
185
+ - task:
186
+ type: Classification
187
+ dataset:
188
+ name: MTEB Banking77Classification
189
+ type: mteb/banking77
190
+ config: default
191
+ split: test
192
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
193
+ metrics:
194
+ - type: accuracy
195
+ value: 87.81818181818181
196
+ - type: f1
197
+ value: 87.79879337316918
198
+ - task:
199
+ type: Clustering
200
+ dataset:
201
+ name: MTEB BiorxivClusteringP2P
202
+ type: mteb/biorxiv-clustering-p2p
203
+ config: default
204
+ split: test
205
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
206
+ metrics:
207
+ - type: v_measure
208
+ value: 39.91773608582761
209
+ - task:
210
+ type: Clustering
211
+ dataset:
212
+ name: MTEB BiorxivClusteringS2S
213
+ type: mteb/biorxiv-clustering-s2s
214
+ config: default
215
+ split: test
216
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
217
+ metrics:
218
+ - type: v_measure
219
+ value: 36.73059477462478
220
+ - task:
221
+ type: Retrieval
222
+ dataset:
223
+ name: MTEB CQADupstackAndroidRetrieval
224
+ type: BeIR/cqadupstack
225
+ config: default
226
+ split: test
227
+ revision: None
228
+ metrics:
229
+ - type: map_at_1
230
+ value: 32.745999999999995
231
+ - type: map_at_10
232
+ value: 43.632
233
+ - type: map_at_100
234
+ value: 45.206
235
+ - type: map_at_1000
236
+ value: 45.341
237
+ - type: map_at_3
238
+ value: 39.956
239
+ - type: map_at_5
240
+ value: 42.031
241
+ - type: mrr_at_1
242
+ value: 39.485
243
+ - type: mrr_at_10
244
+ value: 49.537
245
+ - type: mrr_at_100
246
+ value: 50.249
247
+ - type: mrr_at_1000
248
+ value: 50.294000000000004
249
+ - type: mrr_at_3
250
+ value: 46.757
251
+ - type: mrr_at_5
252
+ value: 48.481
253
+ - type: ndcg_at_1
254
+ value: 39.485
255
+ - type: ndcg_at_10
256
+ value: 50.058
257
+ - type: ndcg_at_100
258
+ value: 55.586
259
+ - type: ndcg_at_1000
260
+ value: 57.511
261
+ - type: ndcg_at_3
262
+ value: 44.786
263
+ - type: ndcg_at_5
264
+ value: 47.339999999999996
265
+ - type: precision_at_1
266
+ value: 39.485
267
+ - type: precision_at_10
268
+ value: 9.557
269
+ - type: precision_at_100
270
+ value: 1.552
271
+ - type: precision_at_1000
272
+ value: 0.202
273
+ - type: precision_at_3
274
+ value: 21.412
275
+ - type: precision_at_5
276
+ value: 15.479000000000001
277
+ - type: recall_at_1
278
+ value: 32.745999999999995
279
+ - type: recall_at_10
280
+ value: 62.056
281
+ - type: recall_at_100
282
+ value: 85.088
283
+ - type: recall_at_1000
284
+ value: 96.952
285
+ - type: recall_at_3
286
+ value: 46.959
287
+ - type: recall_at_5
288
+ value: 54.06999999999999
289
+ - type: map_at_1
290
+ value: 31.898
291
+ - type: map_at_10
292
+ value: 42.142
293
+ - type: map_at_100
294
+ value: 43.349
295
+ - type: map_at_1000
296
+ value: 43.483
297
+ - type: map_at_3
298
+ value: 39.18
299
+ - type: map_at_5
300
+ value: 40.733000000000004
301
+ - type: mrr_at_1
302
+ value: 39.617999999999995
303
+ - type: mrr_at_10
304
+ value: 47.922
305
+ - type: mrr_at_100
306
+ value: 48.547000000000004
307
+ - type: mrr_at_1000
308
+ value: 48.597
309
+ - type: mrr_at_3
310
+ value: 45.86
311
+ - type: mrr_at_5
312
+ value: 46.949000000000005
313
+ - type: ndcg_at_1
314
+ value: 39.617999999999995
315
+ - type: ndcg_at_10
316
+ value: 47.739
317
+ - type: ndcg_at_100
318
+ value: 51.934999999999995
319
+ - type: ndcg_at_1000
320
+ value: 54.007000000000005
321
+ - type: ndcg_at_3
322
+ value: 43.748
323
+ - type: ndcg_at_5
324
+ value: 45.345
325
+ - type: precision_at_1
326
+ value: 39.617999999999995
327
+ - type: precision_at_10
328
+ value: 8.962
329
+ - type: precision_at_100
330
+ value: 1.436
331
+ - type: precision_at_1000
332
+ value: 0.192
333
+ - type: precision_at_3
334
+ value: 21.083
335
+ - type: precision_at_5
336
+ value: 14.752
337
+ - type: recall_at_1
338
+ value: 31.898
339
+ - type: recall_at_10
340
+ value: 57.587999999999994
341
+ - type: recall_at_100
342
+ value: 75.323
343
+ - type: recall_at_1000
344
+ value: 88.304
345
+ - type: recall_at_3
346
+ value: 45.275
347
+ - type: recall_at_5
348
+ value: 49.99
349
+ - type: map_at_1
350
+ value: 40.458
351
+ - type: map_at_10
352
+ value: 52.942
353
+ - type: map_at_100
354
+ value: 53.974
355
+ - type: map_at_1000
356
+ value: 54.031
357
+ - type: map_at_3
358
+ value: 49.559999999999995
359
+ - type: map_at_5
360
+ value: 51.408
361
+ - type: mrr_at_1
362
+ value: 46.27
363
+ - type: mrr_at_10
364
+ value: 56.31699999999999
365
+ - type: mrr_at_100
366
+ value: 56.95099999999999
367
+ - type: mrr_at_1000
368
+ value: 56.98
369
+ - type: mrr_at_3
370
+ value: 53.835
371
+ - type: mrr_at_5
372
+ value: 55.252
373
+ - type: ndcg_at_1
374
+ value: 46.27
375
+ - type: ndcg_at_10
376
+ value: 58.964000000000006
377
+ - type: ndcg_at_100
378
+ value: 62.875
379
+ - type: ndcg_at_1000
380
+ value: 63.969
381
+ - type: ndcg_at_3
382
+ value: 53.297000000000004
383
+ - type: ndcg_at_5
384
+ value: 55.938
385
+ - type: precision_at_1
386
+ value: 46.27
387
+ - type: precision_at_10
388
+ value: 9.549000000000001
389
+ - type: precision_at_100
390
+ value: 1.2409999999999999
391
+ - type: precision_at_1000
392
+ value: 0.13799999999999998
393
+ - type: precision_at_3
394
+ value: 23.762
395
+ - type: precision_at_5
396
+ value: 16.262999999999998
397
+ - type: recall_at_1
398
+ value: 40.458
399
+ - type: recall_at_10
400
+ value: 73.446
401
+ - type: recall_at_100
402
+ value: 90.12400000000001
403
+ - type: recall_at_1000
404
+ value: 97.795
405
+ - type: recall_at_3
406
+ value: 58.123000000000005
407
+ - type: recall_at_5
408
+ value: 64.68
409
+ - type: map_at_1
410
+ value: 27.443
411
+ - type: map_at_10
412
+ value: 36.081
413
+ - type: map_at_100
414
+ value: 37.163000000000004
415
+ - type: map_at_1000
416
+ value: 37.232
417
+ - type: map_at_3
418
+ value: 33.308
419
+ - type: map_at_5
420
+ value: 34.724
421
+ - type: mrr_at_1
422
+ value: 29.492
423
+ - type: mrr_at_10
424
+ value: 38.138
425
+ - type: mrr_at_100
426
+ value: 39.065
427
+ - type: mrr_at_1000
428
+ value: 39.119
429
+ - type: mrr_at_3
430
+ value: 35.593
431
+ - type: mrr_at_5
432
+ value: 36.785000000000004
433
+ - type: ndcg_at_1
434
+ value: 29.492
435
+ - type: ndcg_at_10
436
+ value: 41.134
437
+ - type: ndcg_at_100
438
+ value: 46.300999999999995
439
+ - type: ndcg_at_1000
440
+ value: 48.106
441
+ - type: ndcg_at_3
442
+ value: 35.77
443
+ - type: ndcg_at_5
444
+ value: 38.032
445
+ - type: precision_at_1
446
+ value: 29.492
447
+ - type: precision_at_10
448
+ value: 6.249
449
+ - type: precision_at_100
450
+ value: 0.9299999999999999
451
+ - type: precision_at_1000
452
+ value: 0.11199999999999999
453
+ - type: precision_at_3
454
+ value: 15.065999999999999
455
+ - type: precision_at_5
456
+ value: 10.373000000000001
457
+ - type: recall_at_1
458
+ value: 27.443
459
+ - type: recall_at_10
460
+ value: 54.80199999999999
461
+ - type: recall_at_100
462
+ value: 78.21900000000001
463
+ - type: recall_at_1000
464
+ value: 91.751
465
+ - type: recall_at_3
466
+ value: 40.211000000000006
467
+ - type: recall_at_5
468
+ value: 45.599000000000004
469
+ - type: map_at_1
470
+ value: 18.731
471
+ - type: map_at_10
472
+ value: 26.717999999999996
473
+ - type: map_at_100
474
+ value: 27.897
475
+ - type: map_at_1000
476
+ value: 28.029
477
+ - type: map_at_3
478
+ value: 23.91
479
+ - type: map_at_5
480
+ value: 25.455
481
+ - type: mrr_at_1
482
+ value: 23.134
483
+ - type: mrr_at_10
484
+ value: 31.769
485
+ - type: mrr_at_100
486
+ value: 32.634
487
+ - type: mrr_at_1000
488
+ value: 32.707
489
+ - type: mrr_at_3
490
+ value: 28.938999999999997
491
+ - type: mrr_at_5
492
+ value: 30.531000000000002
493
+ - type: ndcg_at_1
494
+ value: 23.134
495
+ - type: ndcg_at_10
496
+ value: 32.249
497
+ - type: ndcg_at_100
498
+ value: 37.678
499
+ - type: ndcg_at_1000
500
+ value: 40.589999999999996
501
+ - type: ndcg_at_3
502
+ value: 26.985999999999997
503
+ - type: ndcg_at_5
504
+ value: 29.457
505
+ - type: precision_at_1
506
+ value: 23.134
507
+ - type: precision_at_10
508
+ value: 5.8709999999999996
509
+ - type: precision_at_100
510
+ value: 0.988
511
+ - type: precision_at_1000
512
+ value: 0.13799999999999998
513
+ - type: precision_at_3
514
+ value: 12.852
515
+ - type: precision_at_5
516
+ value: 9.428
517
+ - type: recall_at_1
518
+ value: 18.731
519
+ - type: recall_at_10
520
+ value: 44.419
521
+ - type: recall_at_100
522
+ value: 67.851
523
+ - type: recall_at_1000
524
+ value: 88.103
525
+ - type: recall_at_3
526
+ value: 29.919
527
+ - type: recall_at_5
528
+ value: 36.230000000000004
529
+ - type: map_at_1
530
+ value: 30.324
531
+ - type: map_at_10
532
+ value: 41.265
533
+ - type: map_at_100
534
+ value: 42.559000000000005
535
+ - type: map_at_1000
536
+ value: 42.669000000000004
537
+ - type: map_at_3
538
+ value: 38.138
539
+ - type: map_at_5
540
+ value: 39.881
541
+ - type: mrr_at_1
542
+ value: 36.67
543
+ - type: mrr_at_10
544
+ value: 46.774
545
+ - type: mrr_at_100
546
+ value: 47.554
547
+ - type: mrr_at_1000
548
+ value: 47.593
549
+ - type: mrr_at_3
550
+ value: 44.338
551
+ - type: mrr_at_5
552
+ value: 45.723
553
+ - type: ndcg_at_1
554
+ value: 36.67
555
+ - type: ndcg_at_10
556
+ value: 47.367
557
+ - type: ndcg_at_100
558
+ value: 52.623
559
+ - type: ndcg_at_1000
560
+ value: 54.59
561
+ - type: ndcg_at_3
562
+ value: 42.323
563
+ - type: ndcg_at_5
564
+ value: 44.727
565
+ - type: precision_at_1
566
+ value: 36.67
567
+ - type: precision_at_10
568
+ value: 8.518
569
+ - type: precision_at_100
570
+ value: 1.2890000000000001
571
+ - type: precision_at_1000
572
+ value: 0.163
573
+ - type: precision_at_3
574
+ value: 19.955000000000002
575
+ - type: precision_at_5
576
+ value: 14.11
577
+ - type: recall_at_1
578
+ value: 30.324
579
+ - type: recall_at_10
580
+ value: 59.845000000000006
581
+ - type: recall_at_100
582
+ value: 81.77499999999999
583
+ - type: recall_at_1000
584
+ value: 94.463
585
+ - type: recall_at_3
586
+ value: 46.019
587
+ - type: recall_at_5
588
+ value: 52.163000000000004
589
+ - type: map_at_1
590
+ value: 24.229
591
+ - type: map_at_10
592
+ value: 35.004000000000005
593
+ - type: map_at_100
594
+ value: 36.409000000000006
595
+ - type: map_at_1000
596
+ value: 36.521
597
+ - type: map_at_3
598
+ value: 31.793
599
+ - type: map_at_5
600
+ value: 33.432
601
+ - type: mrr_at_1
602
+ value: 30.365
603
+ - type: mrr_at_10
604
+ value: 40.502
605
+ - type: mrr_at_100
606
+ value: 41.372
607
+ - type: mrr_at_1000
608
+ value: 41.435
609
+ - type: mrr_at_3
610
+ value: 37.804
611
+ - type: mrr_at_5
612
+ value: 39.226
613
+ - type: ndcg_at_1
614
+ value: 30.365
615
+ - type: ndcg_at_10
616
+ value: 41.305
617
+ - type: ndcg_at_100
618
+ value: 47.028999999999996
619
+ - type: ndcg_at_1000
620
+ value: 49.375
621
+ - type: ndcg_at_3
622
+ value: 35.85
623
+ - type: ndcg_at_5
624
+ value: 38.12
625
+ - type: precision_at_1
626
+ value: 30.365
627
+ - type: precision_at_10
628
+ value: 7.808
629
+ - type: precision_at_100
630
+ value: 1.228
631
+ - type: precision_at_1000
632
+ value: 0.161
633
+ - type: precision_at_3
634
+ value: 17.352
635
+ - type: precision_at_5
636
+ value: 12.42
637
+ - type: recall_at_1
638
+ value: 24.229
639
+ - type: recall_at_10
640
+ value: 54.673
641
+ - type: recall_at_100
642
+ value: 78.766
643
+ - type: recall_at_1000
644
+ value: 94.625
645
+ - type: recall_at_3
646
+ value: 39.602
647
+ - type: recall_at_5
648
+ value: 45.558
649
+ - type: map_at_1
650
+ value: 26.695
651
+ - type: map_at_10
652
+ value: 36.0895
653
+ - type: map_at_100
654
+ value: 37.309416666666664
655
+ - type: map_at_1000
656
+ value: 37.42558333333334
657
+ - type: map_at_3
658
+ value: 33.19616666666666
659
+ - type: map_at_5
660
+ value: 34.78641666666667
661
+ - type: mrr_at_1
662
+ value: 31.486083333333337
663
+ - type: mrr_at_10
664
+ value: 40.34774999999999
665
+ - type: mrr_at_100
666
+ value: 41.17533333333333
667
+ - type: mrr_at_1000
668
+ value: 41.231583333333326
669
+ - type: mrr_at_3
670
+ value: 37.90075
671
+ - type: mrr_at_5
672
+ value: 39.266999999999996
673
+ - type: ndcg_at_1
674
+ value: 31.486083333333337
675
+ - type: ndcg_at_10
676
+ value: 41.60433333333334
677
+ - type: ndcg_at_100
678
+ value: 46.74525
679
+ - type: ndcg_at_1000
680
+ value: 48.96166666666667
681
+ - type: ndcg_at_3
682
+ value: 36.68825
683
+ - type: ndcg_at_5
684
+ value: 38.966499999999996
685
+ - type: precision_at_1
686
+ value: 31.486083333333337
687
+ - type: precision_at_10
688
+ value: 7.29675
689
+ - type: precision_at_100
690
+ value: 1.1621666666666666
691
+ - type: precision_at_1000
692
+ value: 0.1545
693
+ - type: precision_at_3
694
+ value: 16.8815
695
+ - type: precision_at_5
696
+ value: 11.974583333333333
697
+ - type: recall_at_1
698
+ value: 26.695
699
+ - type: recall_at_10
700
+ value: 53.651916666666665
701
+ - type: recall_at_100
702
+ value: 76.12083333333332
703
+ - type: recall_at_1000
704
+ value: 91.31191666666668
705
+ - type: recall_at_3
706
+ value: 40.03575
707
+ - type: recall_at_5
708
+ value: 45.876666666666665
709
+ - type: map_at_1
710
+ value: 25.668000000000003
711
+ - type: map_at_10
712
+ value: 32.486
713
+ - type: map_at_100
714
+ value: 33.371
715
+ - type: map_at_1000
716
+ value: 33.458
717
+ - type: map_at_3
718
+ value: 30.261
719
+ - type: map_at_5
720
+ value: 31.418000000000003
721
+ - type: mrr_at_1
722
+ value: 28.988000000000003
723
+ - type: mrr_at_10
724
+ value: 35.414
725
+ - type: mrr_at_100
726
+ value: 36.149
727
+ - type: mrr_at_1000
728
+ value: 36.215
729
+ - type: mrr_at_3
730
+ value: 33.333
731
+ - type: mrr_at_5
732
+ value: 34.43
733
+ - type: ndcg_at_1
734
+ value: 28.988000000000003
735
+ - type: ndcg_at_10
736
+ value: 36.732
737
+ - type: ndcg_at_100
738
+ value: 41.331
739
+ - type: ndcg_at_1000
740
+ value: 43.575
741
+ - type: ndcg_at_3
742
+ value: 32.413
743
+ - type: ndcg_at_5
744
+ value: 34.316
745
+ - type: precision_at_1
746
+ value: 28.988000000000003
747
+ - type: precision_at_10
748
+ value: 5.7059999999999995
749
+ - type: precision_at_100
750
+ value: 0.882
751
+ - type: precision_at_1000
752
+ value: 0.11299999999999999
753
+ - type: precision_at_3
754
+ value: 13.65
755
+ - type: precision_at_5
756
+ value: 9.417
757
+ - type: recall_at_1
758
+ value: 25.668000000000003
759
+ - type: recall_at_10
760
+ value: 47.147
761
+ - type: recall_at_100
762
+ value: 68.504
763
+ - type: recall_at_1000
764
+ value: 85.272
765
+ - type: recall_at_3
766
+ value: 35.19
767
+ - type: recall_at_5
768
+ value: 39.925
769
+ - type: map_at_1
770
+ value: 17.256
771
+ - type: map_at_10
772
+ value: 24.58
773
+ - type: map_at_100
774
+ value: 25.773000000000003
775
+ - type: map_at_1000
776
+ value: 25.899
777
+ - type: map_at_3
778
+ value: 22.236
779
+ - type: map_at_5
780
+ value: 23.507
781
+ - type: mrr_at_1
782
+ value: 20.957
783
+ - type: mrr_at_10
784
+ value: 28.416000000000004
785
+ - type: mrr_at_100
786
+ value: 29.447000000000003
787
+ - type: mrr_at_1000
788
+ value: 29.524
789
+ - type: mrr_at_3
790
+ value: 26.245
791
+ - type: mrr_at_5
792
+ value: 27.451999999999998
793
+ - type: ndcg_at_1
794
+ value: 20.957
795
+ - type: ndcg_at_10
796
+ value: 29.285
797
+ - type: ndcg_at_100
798
+ value: 35.003
799
+ - type: ndcg_at_1000
800
+ value: 37.881
801
+ - type: ndcg_at_3
802
+ value: 25.063000000000002
803
+ - type: ndcg_at_5
804
+ value: 26.983
805
+ - type: precision_at_1
806
+ value: 20.957
807
+ - type: precision_at_10
808
+ value: 5.344
809
+ - type: precision_at_100
810
+ value: 0.958
811
+ - type: precision_at_1000
812
+ value: 0.13799999999999998
813
+ - type: precision_at_3
814
+ value: 11.918
815
+ - type: precision_at_5
816
+ value: 8.596
817
+ - type: recall_at_1
818
+ value: 17.256
819
+ - type: recall_at_10
820
+ value: 39.644
821
+ - type: recall_at_100
822
+ value: 65.279
823
+ - type: recall_at_1000
824
+ value: 85.693
825
+ - type: recall_at_3
826
+ value: 27.825
827
+ - type: recall_at_5
828
+ value: 32.792
829
+ - type: map_at_1
830
+ value: 26.700000000000003
831
+ - type: map_at_10
832
+ value: 36.205999999999996
833
+ - type: map_at_100
834
+ value: 37.316
835
+ - type: map_at_1000
836
+ value: 37.425000000000004
837
+ - type: map_at_3
838
+ value: 33.166000000000004
839
+ - type: map_at_5
840
+ value: 35.032999999999994
841
+ - type: mrr_at_1
842
+ value: 31.436999999999998
843
+ - type: mrr_at_10
844
+ value: 40.61
845
+ - type: mrr_at_100
846
+ value: 41.415
847
+ - type: mrr_at_1000
848
+ value: 41.48
849
+ - type: mrr_at_3
850
+ value: 37.966
851
+ - type: mrr_at_5
852
+ value: 39.599000000000004
853
+ - type: ndcg_at_1
854
+ value: 31.436999999999998
855
+ - type: ndcg_at_10
856
+ value: 41.771
857
+ - type: ndcg_at_100
858
+ value: 46.784
859
+ - type: ndcg_at_1000
860
+ value: 49.183
861
+ - type: ndcg_at_3
862
+ value: 36.437000000000005
863
+ - type: ndcg_at_5
864
+ value: 39.291
865
+ - type: precision_at_1
866
+ value: 31.436999999999998
867
+ - type: precision_at_10
868
+ value: 6.987
869
+ - type: precision_at_100
870
+ value: 1.072
871
+ - type: precision_at_1000
872
+ value: 0.13899999999999998
873
+ - type: precision_at_3
874
+ value: 16.448999999999998
875
+ - type: precision_at_5
876
+ value: 11.866
877
+ - type: recall_at_1
878
+ value: 26.700000000000003
879
+ - type: recall_at_10
880
+ value: 54.301
881
+ - type: recall_at_100
882
+ value: 75.871
883
+ - type: recall_at_1000
884
+ value: 92.529
885
+ - type: recall_at_3
886
+ value: 40.201
887
+ - type: recall_at_5
888
+ value: 47.208
889
+ - type: map_at_1
890
+ value: 24.296
891
+ - type: map_at_10
892
+ value: 33.116
893
+ - type: map_at_100
894
+ value: 34.81
895
+ - type: map_at_1000
896
+ value: 35.032000000000004
897
+ - type: map_at_3
898
+ value: 30.105999999999998
899
+ - type: map_at_5
900
+ value: 31.839000000000002
901
+ - type: mrr_at_1
902
+ value: 29.051
903
+ - type: mrr_at_10
904
+ value: 37.803
905
+ - type: mrr_at_100
906
+ value: 38.856
907
+ - type: mrr_at_1000
908
+ value: 38.903999999999996
909
+ - type: mrr_at_3
910
+ value: 35.211
911
+ - type: mrr_at_5
912
+ value: 36.545
913
+ - type: ndcg_at_1
914
+ value: 29.051
915
+ - type: ndcg_at_10
916
+ value: 39.007
917
+ - type: ndcg_at_100
918
+ value: 45.321
919
+ - type: ndcg_at_1000
920
+ value: 47.665
921
+ - type: ndcg_at_3
922
+ value: 34.1
923
+ - type: ndcg_at_5
924
+ value: 36.437000000000005
925
+ - type: precision_at_1
926
+ value: 29.051
927
+ - type: precision_at_10
928
+ value: 7.668
929
+ - type: precision_at_100
930
+ value: 1.542
931
+ - type: precision_at_1000
932
+ value: 0.24
933
+ - type: precision_at_3
934
+ value: 16.14
935
+ - type: precision_at_5
936
+ value: 11.897
937
+ - type: recall_at_1
938
+ value: 24.296
939
+ - type: recall_at_10
940
+ value: 49.85
941
+ - type: recall_at_100
942
+ value: 78.457
943
+ - type: recall_at_1000
944
+ value: 92.618
945
+ - type: recall_at_3
946
+ value: 36.138999999999996
947
+ - type: recall_at_5
948
+ value: 42.223
949
+ - type: map_at_1
950
+ value: 20.591
951
+ - type: map_at_10
952
+ value: 28.902
953
+ - type: map_at_100
954
+ value: 29.886000000000003
955
+ - type: map_at_1000
956
+ value: 29.987000000000002
957
+ - type: map_at_3
958
+ value: 26.740000000000002
959
+ - type: map_at_5
960
+ value: 27.976
961
+ - type: mrr_at_1
962
+ value: 22.366
963
+ - type: mrr_at_10
964
+ value: 30.971
965
+ - type: mrr_at_100
966
+ value: 31.865
967
+ - type: mrr_at_1000
968
+ value: 31.930999999999997
969
+ - type: mrr_at_3
970
+ value: 28.927999999999997
971
+ - type: mrr_at_5
972
+ value: 30.231
973
+ - type: ndcg_at_1
974
+ value: 22.366
975
+ - type: ndcg_at_10
976
+ value: 33.641
977
+ - type: ndcg_at_100
978
+ value: 38.477
979
+ - type: ndcg_at_1000
980
+ value: 41.088
981
+ - type: ndcg_at_3
982
+ value: 29.486
983
+ - type: ndcg_at_5
984
+ value: 31.612000000000002
985
+ - type: precision_at_1
986
+ value: 22.366
987
+ - type: precision_at_10
988
+ value: 5.3420000000000005
989
+ - type: precision_at_100
990
+ value: 0.828
991
+ - type: precision_at_1000
992
+ value: 0.11800000000000001
993
+ - type: precision_at_3
994
+ value: 12.939
995
+ - type: precision_at_5
996
+ value: 9.094
997
+ - type: recall_at_1
998
+ value: 20.591
999
+ - type: recall_at_10
1000
+ value: 46.052
1001
+ - type: recall_at_100
1002
+ value: 68.193
1003
+ - type: recall_at_1000
1004
+ value: 87.638
1005
+ - type: recall_at_3
1006
+ value: 34.966
1007
+ - type: recall_at_5
1008
+ value: 40.082
1009
+ - task:
1010
+ type: Retrieval
1011
+ dataset:
1012
+ name: MTEB ClimateFEVER
1013
+ type: climate-fever
1014
+ config: default
1015
+ split: test
1016
+ revision: None
1017
+ metrics:
1018
+ - type: map_at_1
1019
+ value: 15.091
1020
+ - type: map_at_10
1021
+ value: 26.38
1022
+ - type: map_at_100
1023
+ value: 28.421999999999997
1024
+ - type: map_at_1000
1025
+ value: 28.621999999999996
1026
+ - type: map_at_3
1027
+ value: 21.597
1028
+ - type: map_at_5
1029
+ value: 24.12
1030
+ - type: mrr_at_1
1031
+ value: 34.266999999999996
1032
+ - type: mrr_at_10
1033
+ value: 46.864
1034
+ - type: mrr_at_100
1035
+ value: 47.617
1036
+ - type: mrr_at_1000
1037
+ value: 47.644
1038
+ - type: mrr_at_3
1039
+ value: 43.312
1040
+ - type: mrr_at_5
1041
+ value: 45.501000000000005
1042
+ - type: ndcg_at_1
1043
+ value: 34.266999999999996
1044
+ - type: ndcg_at_10
1045
+ value: 36.095
1046
+ - type: ndcg_at_100
1047
+ value: 43.447
1048
+ - type: ndcg_at_1000
1049
+ value: 46.661
1050
+ - type: ndcg_at_3
1051
+ value: 29.337999999999997
1052
+ - type: ndcg_at_5
1053
+ value: 31.824
1054
+ - type: precision_at_1
1055
+ value: 34.266999999999996
1056
+ - type: precision_at_10
1057
+ value: 11.472
1058
+ - type: precision_at_100
1059
+ value: 1.944
1060
+ - type: precision_at_1000
1061
+ value: 0.255
1062
+ - type: precision_at_3
1063
+ value: 21.933
1064
+ - type: precision_at_5
1065
+ value: 17.224999999999998
1066
+ - type: recall_at_1
1067
+ value: 15.091
1068
+ - type: recall_at_10
1069
+ value: 43.022
1070
+ - type: recall_at_100
1071
+ value: 68.075
1072
+ - type: recall_at_1000
1073
+ value: 85.76
1074
+ - type: recall_at_3
1075
+ value: 26.564
1076
+ - type: recall_at_5
1077
+ value: 33.594
1078
+ - task:
1079
+ type: Retrieval
1080
+ dataset:
1081
+ name: MTEB DBPedia
1082
+ type: dbpedia-entity
1083
+ config: default
1084
+ split: test
1085
+ revision: None
1086
+ metrics:
1087
+ - type: map_at_1
1088
+ value: 9.252
1089
+ - type: map_at_10
1090
+ value: 20.923
1091
+ - type: map_at_100
1092
+ value: 30.741000000000003
1093
+ - type: map_at_1000
1094
+ value: 32.542
1095
+ - type: map_at_3
1096
+ value: 14.442
1097
+ - type: map_at_5
1098
+ value: 17.399
1099
+ - type: mrr_at_1
1100
+ value: 70.25
1101
+ - type: mrr_at_10
1102
+ value: 78.17
1103
+ - type: mrr_at_100
1104
+ value: 78.444
1105
+ - type: mrr_at_1000
1106
+ value: 78.45100000000001
1107
+ - type: mrr_at_3
1108
+ value: 76.958
1109
+ - type: mrr_at_5
1110
+ value: 77.571
1111
+ - type: ndcg_at_1
1112
+ value: 58.375
1113
+ - type: ndcg_at_10
1114
+ value: 44.509
1115
+ - type: ndcg_at_100
1116
+ value: 49.897999999999996
1117
+ - type: ndcg_at_1000
1118
+ value: 57.269999999999996
1119
+ - type: ndcg_at_3
1120
+ value: 48.64
1121
+ - type: ndcg_at_5
1122
+ value: 46.697
1123
+ - type: precision_at_1
1124
+ value: 70.25
1125
+ - type: precision_at_10
1126
+ value: 36.05
1127
+ - type: precision_at_100
1128
+ value: 11.848
1129
+ - type: precision_at_1000
1130
+ value: 2.213
1131
+ - type: precision_at_3
1132
+ value: 52.917
1133
+ - type: precision_at_5
1134
+ value: 45.7
1135
+ - type: recall_at_1
1136
+ value: 9.252
1137
+ - type: recall_at_10
1138
+ value: 27.006999999999998
1139
+ - type: recall_at_100
1140
+ value: 57.008
1141
+ - type: recall_at_1000
1142
+ value: 80.697
1143
+ - type: recall_at_3
1144
+ value: 15.798000000000002
1145
+ - type: recall_at_5
1146
+ value: 20.4
1147
+ - task:
1148
+ type: Classification
1149
+ dataset:
1150
+ name: MTEB EmotionClassification
1151
+ type: mteb/emotion
1152
+ config: default
1153
+ split: test
1154
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1155
+ metrics:
1156
+ - type: accuracy
1157
+ value: 50.88
1158
+ - type: f1
1159
+ value: 45.545495028653384
1160
+ - task:
1161
+ type: Retrieval
1162
+ dataset:
1163
+ name: MTEB FEVER
1164
+ type: fever
1165
+ config: default
1166
+ split: test
1167
+ revision: None
1168
+ metrics:
1169
+ - type: map_at_1
1170
+ value: 75.424
1171
+ - type: map_at_10
1172
+ value: 83.435
1173
+ - type: map_at_100
1174
+ value: 83.66900000000001
1175
+ - type: map_at_1000
1176
+ value: 83.685
1177
+ - type: map_at_3
1178
+ value: 82.39800000000001
1179
+ - type: map_at_5
1180
+ value: 83.07
1181
+ - type: mrr_at_1
1182
+ value: 81.113
1183
+ - type: mrr_at_10
1184
+ value: 87.77199999999999
1185
+ - type: mrr_at_100
1186
+ value: 87.862
1187
+ - type: mrr_at_1000
1188
+ value: 87.86500000000001
1189
+ - type: mrr_at_3
1190
+ value: 87.17099999999999
1191
+ - type: mrr_at_5
1192
+ value: 87.616
1193
+ - type: ndcg_at_1
1194
+ value: 81.113
1195
+ - type: ndcg_at_10
1196
+ value: 86.909
1197
+ - type: ndcg_at_100
1198
+ value: 87.746
1199
+ - type: ndcg_at_1000
1200
+ value: 88.017
1201
+ - type: ndcg_at_3
1202
+ value: 85.368
1203
+ - type: ndcg_at_5
1204
+ value: 86.28099999999999
1205
+ - type: precision_at_1
1206
+ value: 81.113
1207
+ - type: precision_at_10
1208
+ value: 10.363
1209
+ - type: precision_at_100
1210
+ value: 1.102
1211
+ - type: precision_at_1000
1212
+ value: 0.11399999999999999
1213
+ - type: precision_at_3
1214
+ value: 32.507999999999996
1215
+ - type: precision_at_5
1216
+ value: 20.138
1217
+ - type: recall_at_1
1218
+ value: 75.424
1219
+ - type: recall_at_10
1220
+ value: 93.258
1221
+ - type: recall_at_100
1222
+ value: 96.545
1223
+ - type: recall_at_1000
1224
+ value: 98.284
1225
+ - type: recall_at_3
1226
+ value: 89.083
1227
+ - type: recall_at_5
1228
+ value: 91.445
1229
+ - task:
1230
+ type: Retrieval
1231
+ dataset:
1232
+ name: MTEB FiQA2018
1233
+ type: fiqa
1234
+ config: default
1235
+ split: test
1236
+ revision: None
1237
+ metrics:
1238
+ - type: map_at_1
1239
+ value: 22.532
1240
+ - type: map_at_10
1241
+ value: 37.141999999999996
1242
+ - type: map_at_100
1243
+ value: 39.162
1244
+ - type: map_at_1000
1245
+ value: 39.322
1246
+ - type: map_at_3
1247
+ value: 32.885
1248
+ - type: map_at_5
1249
+ value: 35.093999999999994
1250
+ - type: mrr_at_1
1251
+ value: 44.29
1252
+ - type: mrr_at_10
1253
+ value: 53.516
1254
+ - type: mrr_at_100
1255
+ value: 54.24
1256
+ - type: mrr_at_1000
1257
+ value: 54.273
1258
+ - type: mrr_at_3
1259
+ value: 51.286
1260
+ - type: mrr_at_5
1261
+ value: 52.413
1262
+ - type: ndcg_at_1
1263
+ value: 44.29
1264
+ - type: ndcg_at_10
1265
+ value: 45.268
1266
+ - type: ndcg_at_100
1267
+ value: 52.125
1268
+ - type: ndcg_at_1000
1269
+ value: 54.778000000000006
1270
+ - type: ndcg_at_3
1271
+ value: 41.829
1272
+ - type: ndcg_at_5
1273
+ value: 42.525
1274
+ - type: precision_at_1
1275
+ value: 44.29
1276
+ - type: precision_at_10
1277
+ value: 12.5
1278
+ - type: precision_at_100
1279
+ value: 1.9720000000000002
1280
+ - type: precision_at_1000
1281
+ value: 0.245
1282
+ - type: precision_at_3
1283
+ value: 28.035
1284
+ - type: precision_at_5
1285
+ value: 20.093
1286
+ - type: recall_at_1
1287
+ value: 22.532
1288
+ - type: recall_at_10
1289
+ value: 52.419000000000004
1290
+ - type: recall_at_100
1291
+ value: 77.43299999999999
1292
+ - type: recall_at_1000
1293
+ value: 93.379
1294
+ - type: recall_at_3
1295
+ value: 38.629000000000005
1296
+ - type: recall_at_5
1297
+ value: 43.858000000000004
1298
+ - task:
1299
+ type: Retrieval
1300
+ dataset:
1301
+ name: MTEB HotpotQA
1302
+ type: hotpotqa
1303
+ config: default
1304
+ split: test
1305
+ revision: None
1306
+ metrics:
1307
+ - type: map_at_1
1308
+ value: 39.359
1309
+ - type: map_at_10
1310
+ value: 63.966
1311
+ - type: map_at_100
1312
+ value: 64.87
1313
+ - type: map_at_1000
1314
+ value: 64.92599999999999
1315
+ - type: map_at_3
1316
+ value: 60.409
1317
+ - type: map_at_5
1318
+ value: 62.627
1319
+ - type: mrr_at_1
1320
+ value: 78.717
1321
+ - type: mrr_at_10
1322
+ value: 84.468
1323
+ - type: mrr_at_100
1324
+ value: 84.655
1325
+ - type: mrr_at_1000
1326
+ value: 84.661
1327
+ - type: mrr_at_3
1328
+ value: 83.554
1329
+ - type: mrr_at_5
1330
+ value: 84.133
1331
+ - type: ndcg_at_1
1332
+ value: 78.717
1333
+ - type: ndcg_at_10
1334
+ value: 72.03399999999999
1335
+ - type: ndcg_at_100
1336
+ value: 75.158
1337
+ - type: ndcg_at_1000
1338
+ value: 76.197
1339
+ - type: ndcg_at_3
1340
+ value: 67.049
1341
+ - type: ndcg_at_5
1342
+ value: 69.808
1343
+ - type: precision_at_1
1344
+ value: 78.717
1345
+ - type: precision_at_10
1346
+ value: 15.201
1347
+ - type: precision_at_100
1348
+ value: 1.764
1349
+ - type: precision_at_1000
1350
+ value: 0.19
1351
+ - type: precision_at_3
1352
+ value: 43.313
1353
+ - type: precision_at_5
1354
+ value: 28.165000000000003
1355
+ - type: recall_at_1
1356
+ value: 39.359
1357
+ - type: recall_at_10
1358
+ value: 76.003
1359
+ - type: recall_at_100
1360
+ value: 88.197
1361
+ - type: recall_at_1000
1362
+ value: 95.003
1363
+ - type: recall_at_3
1364
+ value: 64.97
1365
+ - type: recall_at_5
1366
+ value: 70.41199999999999
1367
+ - task:
1368
+ type: Classification
1369
+ dataset:
1370
+ name: MTEB ImdbClassification
1371
+ type: mteb/imdb
1372
+ config: default
1373
+ split: test
1374
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1375
+ metrics:
1376
+ - type: accuracy
1377
+ value: 92.83200000000001
1378
+ - type: ap
1379
+ value: 89.33560571859861
1380
+ - type: f1
1381
+ value: 92.82322915005167
1382
+ - task:
1383
+ type: Retrieval
1384
+ dataset:
1385
+ name: MTEB MSMARCO
1386
+ type: msmarco
1387
+ config: default
1388
+ split: dev
1389
+ revision: None
1390
+ metrics:
1391
+ - type: map_at_1
1392
+ value: 21.983
1393
+ - type: map_at_10
1394
+ value: 34.259
1395
+ - type: map_at_100
1396
+ value: 35.432
1397
+ - type: map_at_1000
1398
+ value: 35.482
1399
+ - type: map_at_3
1400
+ value: 30.275999999999996
1401
+ - type: map_at_5
1402
+ value: 32.566
1403
+ - type: mrr_at_1
1404
+ value: 22.579
1405
+ - type: mrr_at_10
1406
+ value: 34.882999999999996
1407
+ - type: mrr_at_100
1408
+ value: 35.984
1409
+ - type: mrr_at_1000
1410
+ value: 36.028
1411
+ - type: mrr_at_3
1412
+ value: 30.964999999999996
1413
+ - type: mrr_at_5
1414
+ value: 33.245000000000005
1415
+ - type: ndcg_at_1
1416
+ value: 22.564
1417
+ - type: ndcg_at_10
1418
+ value: 41.258
1419
+ - type: ndcg_at_100
1420
+ value: 46.824
1421
+ - type: ndcg_at_1000
1422
+ value: 48.037
1423
+ - type: ndcg_at_3
1424
+ value: 33.17
1425
+ - type: ndcg_at_5
1426
+ value: 37.263000000000005
1427
+ - type: precision_at_1
1428
+ value: 22.564
1429
+ - type: precision_at_10
1430
+ value: 6.572
1431
+ - type: precision_at_100
1432
+ value: 0.935
1433
+ - type: precision_at_1000
1434
+ value: 0.104
1435
+ - type: precision_at_3
1436
+ value: 14.130999999999998
1437
+ - type: precision_at_5
1438
+ value: 10.544
1439
+ - type: recall_at_1
1440
+ value: 21.983
1441
+ - type: recall_at_10
1442
+ value: 62.775000000000006
1443
+ - type: recall_at_100
1444
+ value: 88.389
1445
+ - type: recall_at_1000
1446
+ value: 97.603
1447
+ - type: recall_at_3
1448
+ value: 40.878
1449
+ - type: recall_at_5
1450
+ value: 50.690000000000005
1451
+ - task:
1452
+ type: Classification
1453
+ dataset:
1454
+ name: MTEB MTOPDomainClassification (en)
1455
+ type: mteb/mtop_domain
1456
+ config: en
1457
+ split: test
1458
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1459
+ metrics:
1460
+ - type: accuracy
1461
+ value: 93.95120839033288
1462
+ - type: f1
1463
+ value: 93.73824125055208
1464
+ - task:
1465
+ type: Classification
1466
+ dataset:
1467
+ name: MTEB MTOPIntentClassification (en)
1468
+ type: mteb/mtop_intent
1469
+ config: en
1470
+ split: test
1471
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1472
+ metrics:
1473
+ - type: accuracy
1474
+ value: 76.78978568171455
1475
+ - type: f1
1476
+ value: 57.50180552858304
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ name: MTEB MassiveIntentClassification (en)
1481
+ type: mteb/amazon_massive_intent
1482
+ config: en
1483
+ split: test
1484
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 76.24411566913248
1488
+ - type: f1
1489
+ value: 74.37851403532832
1490
+ - task:
1491
+ type: Classification
1492
+ dataset:
1493
+ name: MTEB MassiveScenarioClassification (en)
1494
+ type: mteb/amazon_massive_scenario
1495
+ config: en
1496
+ split: test
1497
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1498
+ metrics:
1499
+ - type: accuracy
1500
+ value: 79.94620040349699
1501
+ - type: f1
1502
+ value: 80.21293397970435
1503
+ - task:
1504
+ type: Clustering
1505
+ dataset:
1506
+ name: MTEB MedrxivClusteringP2P
1507
+ type: mteb/medrxiv-clustering-p2p
1508
+ config: default
1509
+ split: test
1510
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1511
+ metrics:
1512
+ - type: v_measure
1513
+ value: 33.44403096245675
1514
+ - task:
1515
+ type: Clustering
1516
+ dataset:
1517
+ name: MTEB MedrxivClusteringS2S
1518
+ type: mteb/medrxiv-clustering-s2s
1519
+ config: default
1520
+ split: test
1521
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1522
+ metrics:
1523
+ - type: v_measure
1524
+ value: 31.659594631336812
1525
+ - task:
1526
+ type: Reranking
1527
+ dataset:
1528
+ name: MTEB MindSmallReranking
1529
+ type: mteb/mind_small
1530
+ config: default
1531
+ split: test
1532
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1533
+ metrics:
1534
+ - type: map
1535
+ value: 32.53833075108798
1536
+ - type: mrr
1537
+ value: 33.78840823218308
1538
+ - task:
1539
+ type: Retrieval
1540
+ dataset:
1541
+ name: MTEB NFCorpus
1542
+ type: nfcorpus
1543
+ config: default
1544
+ split: test
1545
+ revision: None
1546
+ metrics:
1547
+ - type: map_at_1
1548
+ value: 7.185999999999999
1549
+ - type: map_at_10
1550
+ value: 15.193999999999999
1551
+ - type: map_at_100
1552
+ value: 19.538
1553
+ - type: map_at_1000
1554
+ value: 21.178
1555
+ - type: map_at_3
1556
+ value: 11.208
1557
+ - type: map_at_5
1558
+ value: 12.745999999999999
1559
+ - type: mrr_at_1
1560
+ value: 48.916
1561
+ - type: mrr_at_10
1562
+ value: 58.141
1563
+ - type: mrr_at_100
1564
+ value: 58.656
1565
+ - type: mrr_at_1000
1566
+ value: 58.684999999999995
1567
+ - type: mrr_at_3
1568
+ value: 55.521
1569
+ - type: mrr_at_5
1570
+ value: 57.239
1571
+ - type: ndcg_at_1
1572
+ value: 47.059
1573
+ - type: ndcg_at_10
1574
+ value: 38.644
1575
+ - type: ndcg_at_100
1576
+ value: 36.272999999999996
1577
+ - type: ndcg_at_1000
1578
+ value: 44.996
1579
+ - type: ndcg_at_3
1580
+ value: 43.293
1581
+ - type: ndcg_at_5
1582
+ value: 40.819
1583
+ - type: precision_at_1
1584
+ value: 48.916
1585
+ - type: precision_at_10
1586
+ value: 28.607
1587
+ - type: precision_at_100
1588
+ value: 9.195
1589
+ - type: precision_at_1000
1590
+ value: 2.225
1591
+ - type: precision_at_3
1592
+ value: 40.454
1593
+ - type: precision_at_5
1594
+ value: 34.985
1595
+ - type: recall_at_1
1596
+ value: 7.185999999999999
1597
+ - type: recall_at_10
1598
+ value: 19.654
1599
+ - type: recall_at_100
1600
+ value: 37.224000000000004
1601
+ - type: recall_at_1000
1602
+ value: 68.663
1603
+ - type: recall_at_3
1604
+ value: 12.158
1605
+ - type: recall_at_5
1606
+ value: 14.674999999999999
1607
+ - task:
1608
+ type: Retrieval
1609
+ dataset:
1610
+ name: MTEB NQ
1611
+ type: nq
1612
+ config: default
1613
+ split: test
1614
+ revision: None
1615
+ metrics:
1616
+ - type: map_at_1
1617
+ value: 31.552000000000003
1618
+ - type: map_at_10
1619
+ value: 47.75
1620
+ - type: map_at_100
1621
+ value: 48.728
1622
+ - type: map_at_1000
1623
+ value: 48.754
1624
+ - type: map_at_3
1625
+ value: 43.156
1626
+ - type: map_at_5
1627
+ value: 45.883
1628
+ - type: mrr_at_1
1629
+ value: 35.66
1630
+ - type: mrr_at_10
1631
+ value: 50.269
1632
+ - type: mrr_at_100
1633
+ value: 50.974
1634
+ - type: mrr_at_1000
1635
+ value: 50.991
1636
+ - type: mrr_at_3
1637
+ value: 46.519
1638
+ - type: mrr_at_5
1639
+ value: 48.764
1640
+ - type: ndcg_at_1
1641
+ value: 35.632000000000005
1642
+ - type: ndcg_at_10
1643
+ value: 55.786
1644
+ - type: ndcg_at_100
1645
+ value: 59.748999999999995
1646
+ - type: ndcg_at_1000
1647
+ value: 60.339
1648
+ - type: ndcg_at_3
1649
+ value: 47.292
1650
+ - type: ndcg_at_5
1651
+ value: 51.766999999999996
1652
+ - type: precision_at_1
1653
+ value: 35.632000000000005
1654
+ - type: precision_at_10
1655
+ value: 9.267
1656
+ - type: precision_at_100
1657
+ value: 1.149
1658
+ - type: precision_at_1000
1659
+ value: 0.12
1660
+ - type: precision_at_3
1661
+ value: 21.601
1662
+ - type: precision_at_5
1663
+ value: 15.539
1664
+ - type: recall_at_1
1665
+ value: 31.552000000000003
1666
+ - type: recall_at_10
1667
+ value: 77.62400000000001
1668
+ - type: recall_at_100
1669
+ value: 94.527
1670
+ - type: recall_at_1000
1671
+ value: 98.919
1672
+ - type: recall_at_3
1673
+ value: 55.898
1674
+ - type: recall_at_5
1675
+ value: 66.121
1676
+ - task:
1677
+ type: Retrieval
1678
+ dataset:
1679
+ name: MTEB QuoraRetrieval
1680
+ type: quora
1681
+ config: default
1682
+ split: test
1683
+ revision: None
1684
+ metrics:
1685
+ - type: map_at_1
1686
+ value: 71.414
1687
+ - type: map_at_10
1688
+ value: 85.37400000000001
1689
+ - type: map_at_100
1690
+ value: 86.01100000000001
1691
+ - type: map_at_1000
1692
+ value: 86.027
1693
+ - type: map_at_3
1694
+ value: 82.562
1695
+ - type: map_at_5
1696
+ value: 84.284
1697
+ - type: mrr_at_1
1698
+ value: 82.24000000000001
1699
+ - type: mrr_at_10
1700
+ value: 88.225
1701
+ - type: mrr_at_100
1702
+ value: 88.324
1703
+ - type: mrr_at_1000
1704
+ value: 88.325
1705
+ - type: mrr_at_3
1706
+ value: 87.348
1707
+ - type: mrr_at_5
1708
+ value: 87.938
1709
+ - type: ndcg_at_1
1710
+ value: 82.24000000000001
1711
+ - type: ndcg_at_10
1712
+ value: 88.97699999999999
1713
+ - type: ndcg_at_100
1714
+ value: 90.16
1715
+ - type: ndcg_at_1000
1716
+ value: 90.236
1717
+ - type: ndcg_at_3
1718
+ value: 86.371
1719
+ - type: ndcg_at_5
1720
+ value: 87.746
1721
+ - type: precision_at_1
1722
+ value: 82.24000000000001
1723
+ - type: precision_at_10
1724
+ value: 13.481000000000002
1725
+ - type: precision_at_100
1726
+ value: 1.534
1727
+ - type: precision_at_1000
1728
+ value: 0.157
1729
+ - type: precision_at_3
1730
+ value: 37.86
1731
+ - type: precision_at_5
1732
+ value: 24.738
1733
+ - type: recall_at_1
1734
+ value: 71.414
1735
+ - type: recall_at_10
1736
+ value: 95.735
1737
+ - type: recall_at_100
1738
+ value: 99.696
1739
+ - type: recall_at_1000
1740
+ value: 99.979
1741
+ - type: recall_at_3
1742
+ value: 88.105
1743
+ - type: recall_at_5
1744
+ value: 92.17999999999999
1745
+ - task:
1746
+ type: Clustering
1747
+ dataset:
1748
+ name: MTEB RedditClustering
1749
+ type: mteb/reddit-clustering
1750
+ config: default
1751
+ split: test
1752
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1753
+ metrics:
1754
+ - type: v_measure
1755
+ value: 60.22146692057259
1756
+ - task:
1757
+ type: Clustering
1758
+ dataset:
1759
+ name: MTEB RedditClusteringP2P
1760
+ type: mteb/reddit-clustering-p2p
1761
+ config: default
1762
+ split: test
1763
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1764
+ metrics:
1765
+ - type: v_measure
1766
+ value: 65.29273320614578
1767
+ - task:
1768
+ type: Retrieval
1769
+ dataset:
1770
+ name: MTEB SCIDOCS
1771
+ type: scidocs
1772
+ config: default
1773
+ split: test
1774
+ revision: None
1775
+ metrics:
1776
+ - type: map_at_1
1777
+ value: 5.023
1778
+ - type: map_at_10
1779
+ value: 14.161000000000001
1780
+ - type: map_at_100
1781
+ value: 16.68
1782
+ - type: map_at_1000
1783
+ value: 17.072000000000003
1784
+ - type: map_at_3
1785
+ value: 9.763
1786
+ - type: map_at_5
1787
+ value: 11.977
1788
+ - type: mrr_at_1
1789
+ value: 24.8
1790
+ - type: mrr_at_10
1791
+ value: 37.602999999999994
1792
+ - type: mrr_at_100
1793
+ value: 38.618
1794
+ - type: mrr_at_1000
1795
+ value: 38.659
1796
+ - type: mrr_at_3
1797
+ value: 34.117
1798
+ - type: mrr_at_5
1799
+ value: 36.082
1800
+ - type: ndcg_at_1
1801
+ value: 24.8
1802
+ - type: ndcg_at_10
1803
+ value: 23.316
1804
+ - type: ndcg_at_100
1805
+ value: 32.613
1806
+ - type: ndcg_at_1000
1807
+ value: 38.609
1808
+ - type: ndcg_at_3
1809
+ value: 21.697
1810
+ - type: ndcg_at_5
1811
+ value: 19.241
1812
+ - type: precision_at_1
1813
+ value: 24.8
1814
+ - type: precision_at_10
1815
+ value: 12.36
1816
+ - type: precision_at_100
1817
+ value: 2.593
1818
+ - type: precision_at_1000
1819
+ value: 0.402
1820
+ - type: precision_at_3
1821
+ value: 20.767
1822
+ - type: precision_at_5
1823
+ value: 17.34
1824
+ - type: recall_at_1
1825
+ value: 5.023
1826
+ - type: recall_at_10
1827
+ value: 25.069999999999997
1828
+ - type: recall_at_100
1829
+ value: 52.563
1830
+ - type: recall_at_1000
1831
+ value: 81.525
1832
+ - type: recall_at_3
1833
+ value: 12.613
1834
+ - type: recall_at_5
1835
+ value: 17.583
1836
+ - task:
1837
+ type: STS
1838
+ dataset:
1839
+ name: MTEB SICK-R
1840
+ type: mteb/sickr-sts
1841
+ config: default
1842
+ split: test
1843
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1844
+ metrics:
1845
+ - type: cos_sim_pearson
1846
+ value: 87.71506247604255
1847
+ - type: cos_sim_spearman
1848
+ value: 82.91813463738802
1849
+ - type: euclidean_pearson
1850
+ value: 85.5154616194479
1851
+ - type: euclidean_spearman
1852
+ value: 82.91815254466314
1853
+ - type: manhattan_pearson
1854
+ value: 85.5280917850374
1855
+ - type: manhattan_spearman
1856
+ value: 82.92276537286398
1857
+ - task:
1858
+ type: STS
1859
+ dataset:
1860
+ name: MTEB STS12
1861
+ type: mteb/sts12-sts
1862
+ config: default
1863
+ split: test
1864
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1865
+ metrics:
1866
+ - type: cos_sim_pearson
1867
+ value: 87.43772054228462
1868
+ - type: cos_sim_spearman
1869
+ value: 78.75750601716682
1870
+ - type: euclidean_pearson
1871
+ value: 85.76074482955764
1872
+ - type: euclidean_spearman
1873
+ value: 78.75651057223058
1874
+ - type: manhattan_pearson
1875
+ value: 85.73390291701668
1876
+ - type: manhattan_spearman
1877
+ value: 78.72699385957797
1878
+ - task:
1879
+ type: STS
1880
+ dataset:
1881
+ name: MTEB STS13
1882
+ type: mteb/sts13-sts
1883
+ config: default
1884
+ split: test
1885
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1886
+ metrics:
1887
+ - type: cos_sim_pearson
1888
+ value: 89.58144067172472
1889
+ - type: cos_sim_spearman
1890
+ value: 90.3524512966946
1891
+ - type: euclidean_pearson
1892
+ value: 89.71365391594237
1893
+ - type: euclidean_spearman
1894
+ value: 90.35239632843408
1895
+ - type: manhattan_pearson
1896
+ value: 89.66905421746478
1897
+ - type: manhattan_spearman
1898
+ value: 90.31508211683513
1899
+ - task:
1900
+ type: STS
1901
+ dataset:
1902
+ name: MTEB STS14
1903
+ type: mteb/sts14-sts
1904
+ config: default
1905
+ split: test
1906
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1907
+ metrics:
1908
+ - type: cos_sim_pearson
1909
+ value: 87.77692637102102
1910
+ - type: cos_sim_spearman
1911
+ value: 85.45710562643485
1912
+ - type: euclidean_pearson
1913
+ value: 87.42456979928723
1914
+ - type: euclidean_spearman
1915
+ value: 85.45709386240908
1916
+ - type: manhattan_pearson
1917
+ value: 87.40754529526272
1918
+ - type: manhattan_spearman
1919
+ value: 85.44834854173303
1920
+ - task:
1921
+ type: STS
1922
+ dataset:
1923
+ name: MTEB STS15
1924
+ type: mteb/sts15-sts
1925
+ config: default
1926
+ split: test
1927
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1928
+ metrics:
1929
+ - type: cos_sim_pearson
1930
+ value: 88.28491331695997
1931
+ - type: cos_sim_spearman
1932
+ value: 89.62037029566964
1933
+ - type: euclidean_pearson
1934
+ value: 89.02479391362826
1935
+ - type: euclidean_spearman
1936
+ value: 89.62036733618466
1937
+ - type: manhattan_pearson
1938
+ value: 89.00394756040342
1939
+ - type: manhattan_spearman
1940
+ value: 89.60867744215236
1941
+ - task:
1942
+ type: STS
1943
+ dataset:
1944
+ name: MTEB STS16
1945
+ type: mteb/sts16-sts
1946
+ config: default
1947
+ split: test
1948
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1949
+ metrics:
1950
+ - type: cos_sim_pearson
1951
+ value: 85.08911381280191
1952
+ - type: cos_sim_spearman
1953
+ value: 86.5791780765767
1954
+ - type: euclidean_pearson
1955
+ value: 86.16063473577861
1956
+ - type: euclidean_spearman
1957
+ value: 86.57917745378766
1958
+ - type: manhattan_pearson
1959
+ value: 86.13677924604175
1960
+ - type: manhattan_spearman
1961
+ value: 86.56115615768685
1962
+ - task:
1963
+ type: STS
1964
+ dataset:
1965
+ name: MTEB STS17 (en-en)
1966
+ type: mteb/sts17-crosslingual-sts
1967
+ config: en-en
1968
+ split: test
1969
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1970
+ metrics:
1971
+ - type: cos_sim_pearson
1972
+ value: 89.58029496205235
1973
+ - type: cos_sim_spearman
1974
+ value: 89.49551253826998
1975
+ - type: euclidean_pearson
1976
+ value: 90.13714840963748
1977
+ - type: euclidean_spearman
1978
+ value: 89.49551253826998
1979
+ - type: manhattan_pearson
1980
+ value: 90.13039633601363
1981
+ - type: manhattan_spearman
1982
+ value: 89.4513453745516
1983
+ - task:
1984
+ type: STS
1985
+ dataset:
1986
+ name: MTEB STS22 (en)
1987
+ type: mteb/sts22-crosslingual-sts
1988
+ config: en
1989
+ split: test
1990
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1991
+ metrics:
1992
+ - type: cos_sim_pearson
1993
+ value: 69.01546399666435
1994
+ - type: cos_sim_spearman
1995
+ value: 69.33824484595624
1996
+ - type: euclidean_pearson
1997
+ value: 70.76511642998874
1998
+ - type: euclidean_spearman
1999
+ value: 69.33824484595624
2000
+ - type: manhattan_pearson
2001
+ value: 70.84320785047453
2002
+ - type: manhattan_spearman
2003
+ value: 69.54233632223537
2004
+ - task:
2005
+ type: STS
2006
+ dataset:
2007
+ name: MTEB STSBenchmark
2008
+ type: mteb/stsbenchmark-sts
2009
+ config: default
2010
+ split: test
2011
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2012
+ metrics:
2013
+ - type: cos_sim_pearson
2014
+ value: 87.26389196390119
2015
+ - type: cos_sim_spearman
2016
+ value: 89.09721478341385
2017
+ - type: euclidean_pearson
2018
+ value: 88.97208685922517
2019
+ - type: euclidean_spearman
2020
+ value: 89.09720927308881
2021
+ - type: manhattan_pearson
2022
+ value: 88.97513670502573
2023
+ - type: manhattan_spearman
2024
+ value: 89.07647853984004
2025
+ - task:
2026
+ type: Reranking
2027
+ dataset:
2028
+ name: MTEB SciDocsRR
2029
+ type: mteb/scidocs-reranking
2030
+ config: default
2031
+ split: test
2032
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2033
+ metrics:
2034
+ - type: map
2035
+ value: 87.53075025771936
2036
+ - type: mrr
2037
+ value: 96.24327651288436
2038
+ - task:
2039
+ type: Retrieval
2040
+ dataset:
2041
+ name: MTEB SciFact
2042
+ type: scifact
2043
+ config: default
2044
+ split: test
2045
+ revision: None
2046
+ metrics:
2047
+ - type: map_at_1
2048
+ value: 60.428000000000004
2049
+ - type: map_at_10
2050
+ value: 70.088
2051
+ - type: map_at_100
2052
+ value: 70.589
2053
+ - type: map_at_1000
2054
+ value: 70.614
2055
+ - type: map_at_3
2056
+ value: 67.191
2057
+ - type: map_at_5
2058
+ value: 68.515
2059
+ - type: mrr_at_1
2060
+ value: 63.333
2061
+ - type: mrr_at_10
2062
+ value: 71.13000000000001
2063
+ - type: mrr_at_100
2064
+ value: 71.545
2065
+ - type: mrr_at_1000
2066
+ value: 71.569
2067
+ - type: mrr_at_3
2068
+ value: 68.944
2069
+ - type: mrr_at_5
2070
+ value: 70.078
2071
+ - type: ndcg_at_1
2072
+ value: 63.333
2073
+ - type: ndcg_at_10
2074
+ value: 74.72800000000001
2075
+ - type: ndcg_at_100
2076
+ value: 76.64999999999999
2077
+ - type: ndcg_at_1000
2078
+ value: 77.176
2079
+ - type: ndcg_at_3
2080
+ value: 69.659
2081
+ - type: ndcg_at_5
2082
+ value: 71.626
2083
+ - type: precision_at_1
2084
+ value: 63.333
2085
+ - type: precision_at_10
2086
+ value: 10
2087
+ - type: precision_at_100
2088
+ value: 1.09
2089
+ - type: precision_at_1000
2090
+ value: 0.11299999999999999
2091
+ - type: precision_at_3
2092
+ value: 27.111
2093
+ - type: precision_at_5
2094
+ value: 17.666999999999998
2095
+ - type: recall_at_1
2096
+ value: 60.428000000000004
2097
+ - type: recall_at_10
2098
+ value: 87.98899999999999
2099
+ - type: recall_at_100
2100
+ value: 96.167
2101
+ - type: recall_at_1000
2102
+ value: 100
2103
+ - type: recall_at_3
2104
+ value: 74.006
2105
+ - type: recall_at_5
2106
+ value: 79.05
2107
+ - task:
2108
+ type: PairClassification
2109
+ dataset:
2110
+ name: MTEB SprintDuplicateQuestions
2111
+ type: mteb/sprintduplicatequestions-pairclassification
2112
+ config: default
2113
+ split: test
2114
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2115
+ metrics:
2116
+ - type: cos_sim_accuracy
2117
+ value: 99.87326732673267
2118
+ - type: cos_sim_ap
2119
+ value: 96.81770773701805
2120
+ - type: cos_sim_f1
2121
+ value: 93.6318407960199
2122
+ - type: cos_sim_precision
2123
+ value: 93.16831683168317
2124
+ - type: cos_sim_recall
2125
+ value: 94.1
2126
+ - type: dot_accuracy
2127
+ value: 99.87326732673267
2128
+ - type: dot_ap
2129
+ value: 96.8174218946665
2130
+ - type: dot_f1
2131
+ value: 93.6318407960199
2132
+ - type: dot_precision
2133
+ value: 93.16831683168317
2134
+ - type: dot_recall
2135
+ value: 94.1
2136
+ - type: euclidean_accuracy
2137
+ value: 99.87326732673267
2138
+ - type: euclidean_ap
2139
+ value: 96.81770773701807
2140
+ - type: euclidean_f1
2141
+ value: 93.6318407960199
2142
+ - type: euclidean_precision
2143
+ value: 93.16831683168317
2144
+ - type: euclidean_recall
2145
+ value: 94.1
2146
+ - type: manhattan_accuracy
2147
+ value: 99.87227722772278
2148
+ - type: manhattan_ap
2149
+ value: 96.83164126821747
2150
+ - type: manhattan_f1
2151
+ value: 93.54677338669335
2152
+ - type: manhattan_precision
2153
+ value: 93.5935935935936
2154
+ - type: manhattan_recall
2155
+ value: 93.5
2156
+ - type: max_accuracy
2157
+ value: 99.87326732673267
2158
+ - type: max_ap
2159
+ value: 96.83164126821747
2160
+ - type: max_f1
2161
+ value: 93.6318407960199
2162
+ - task:
2163
+ type: Clustering
2164
+ dataset:
2165
+ name: MTEB StackExchangeClustering
2166
+ type: mteb/stackexchange-clustering
2167
+ config: default
2168
+ split: test
2169
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2170
+ metrics:
2171
+ - type: v_measure
2172
+ value: 65.6212042420246
2173
+ - task:
2174
+ type: Clustering
2175
+ dataset:
2176
+ name: MTEB StackExchangeClusteringP2P
2177
+ type: mteb/stackexchange-clustering-p2p
2178
+ config: default
2179
+ split: test
2180
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2181
+ metrics:
2182
+ - type: v_measure
2183
+ value: 35.779230635982564
2184
+ - task:
2185
+ type: Reranking
2186
+ dataset:
2187
+ name: MTEB StackOverflowDupQuestions
2188
+ type: mteb/stackoverflowdupquestions-reranking
2189
+ config: default
2190
+ split: test
2191
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2192
+ metrics:
2193
+ - type: map
2194
+ value: 55.217701909036286
2195
+ - type: mrr
2196
+ value: 56.17658995416349
2197
+ - task:
2198
+ type: Summarization
2199
+ dataset:
2200
+ name: MTEB SummEval
2201
+ type: mteb/summeval
2202
+ config: default
2203
+ split: test
2204
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2205
+ metrics:
2206
+ - type: cos_sim_pearson
2207
+ value: 30.954206018888453
2208
+ - type: cos_sim_spearman
2209
+ value: 32.71062599450096
2210
+ - type: dot_pearson
2211
+ value: 30.95420929056943
2212
+ - type: dot_spearman
2213
+ value: 32.71062599450096
2214
+ - task:
2215
+ type: Retrieval
2216
+ dataset:
2217
+ name: MTEB TRECCOVID
2218
+ type: trec-covid
2219
+ config: default
2220
+ split: test
2221
+ revision: None
2222
+ metrics:
2223
+ - type: map_at_1
2224
+ value: 0.22699999999999998
2225
+ - type: map_at_10
2226
+ value: 1.924
2227
+ - type: map_at_100
2228
+ value: 10.525
2229
+ - type: map_at_1000
2230
+ value: 24.973
2231
+ - type: map_at_3
2232
+ value: 0.638
2233
+ - type: map_at_5
2234
+ value: 1.0659999999999998
2235
+ - type: mrr_at_1
2236
+ value: 84
2237
+ - type: mrr_at_10
2238
+ value: 91.067
2239
+ - type: mrr_at_100
2240
+ value: 91.067
2241
+ - type: mrr_at_1000
2242
+ value: 91.067
2243
+ - type: mrr_at_3
2244
+ value: 90.667
2245
+ - type: mrr_at_5
2246
+ value: 91.067
2247
+ - type: ndcg_at_1
2248
+ value: 81
2249
+ - type: ndcg_at_10
2250
+ value: 75.566
2251
+ - type: ndcg_at_100
2252
+ value: 56.387
2253
+ - type: ndcg_at_1000
2254
+ value: 49.834
2255
+ - type: ndcg_at_3
2256
+ value: 80.899
2257
+ - type: ndcg_at_5
2258
+ value: 80.75099999999999
2259
+ - type: precision_at_1
2260
+ value: 84
2261
+ - type: precision_at_10
2262
+ value: 79
2263
+ - type: precision_at_100
2264
+ value: 57.56
2265
+ - type: precision_at_1000
2266
+ value: 21.8
2267
+ - type: precision_at_3
2268
+ value: 84.667
2269
+ - type: precision_at_5
2270
+ value: 85.2
2271
+ - type: recall_at_1
2272
+ value: 0.22699999999999998
2273
+ - type: recall_at_10
2274
+ value: 2.136
2275
+ - type: recall_at_100
2276
+ value: 13.861
2277
+ - type: recall_at_1000
2278
+ value: 46.299
2279
+ - type: recall_at_3
2280
+ value: 0.6649999999999999
2281
+ - type: recall_at_5
2282
+ value: 1.145
2283
+ - task:
2284
+ type: Retrieval
2285
+ dataset:
2286
+ name: MTEB Touche2020
2287
+ type: webis-touche2020
2288
+ config: default
2289
+ split: test
2290
+ revision: None
2291
+ metrics:
2292
+ - type: map_at_1
2293
+ value: 2.752
2294
+ - type: map_at_10
2295
+ value: 9.951
2296
+ - type: map_at_100
2297
+ value: 16.794999999999998
2298
+ - type: map_at_1000
2299
+ value: 18.251
2300
+ - type: map_at_3
2301
+ value: 5.288
2302
+ - type: map_at_5
2303
+ value: 6.954000000000001
2304
+ - type: mrr_at_1
2305
+ value: 38.775999999999996
2306
+ - type: mrr_at_10
2307
+ value: 50.458000000000006
2308
+ - type: mrr_at_100
2309
+ value: 51.324999999999996
2310
+ - type: mrr_at_1000
2311
+ value: 51.339999999999996
2312
+ - type: mrr_at_3
2313
+ value: 46.939
2314
+ - type: mrr_at_5
2315
+ value: 47.857
2316
+ - type: ndcg_at_1
2317
+ value: 36.735
2318
+ - type: ndcg_at_10
2319
+ value: 25.198999999999998
2320
+ - type: ndcg_at_100
2321
+ value: 37.938
2322
+ - type: ndcg_at_1000
2323
+ value: 49.145
2324
+ - type: ndcg_at_3
2325
+ value: 29.348000000000003
2326
+ - type: ndcg_at_5
2327
+ value: 25.804
2328
+ - type: precision_at_1
2329
+ value: 38.775999999999996
2330
+ - type: precision_at_10
2331
+ value: 22.041
2332
+ - type: precision_at_100
2333
+ value: 7.939
2334
+ - type: precision_at_1000
2335
+ value: 1.555
2336
+ - type: precision_at_3
2337
+ value: 29.932
2338
+ - type: precision_at_5
2339
+ value: 24.490000000000002
2340
+ - type: recall_at_1
2341
+ value: 2.752
2342
+ - type: recall_at_10
2343
+ value: 16.197
2344
+ - type: recall_at_100
2345
+ value: 49.166
2346
+ - type: recall_at_1000
2347
+ value: 84.18900000000001
2348
+ - type: recall_at_3
2349
+ value: 6.438000000000001
2350
+ - type: recall_at_5
2351
+ value: 9.093
2352
+ - task:
2353
+ type: Classification
2354
+ dataset:
2355
+ name: MTEB ToxicConversationsClassification
2356
+ type: mteb/toxic_conversations_50k
2357
+ config: default
2358
+ split: test
2359
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2360
+ metrics:
2361
+ - type: accuracy
2362
+ value: 71.47980000000001
2363
+ - type: ap
2364
+ value: 14.605194452178754
2365
+ - type: f1
2366
+ value: 55.07362924988948
2367
+ - task:
2368
+ type: Classification
2369
+ dataset:
2370
+ name: MTEB TweetSentimentExtractionClassification
2371
+ type: mteb/tweet_sentiment_extraction
2372
+ config: default
2373
+ split: test
2374
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2375
+ metrics:
2376
+ - type: accuracy
2377
+ value: 59.708545557441994
2378
+ - type: f1
2379
+ value: 60.04751270975683
2380
+ - task:
2381
+ type: Clustering
2382
+ dataset:
2383
+ name: MTEB TwentyNewsgroupsClustering
2384
+ type: mteb/twentynewsgroups-clustering
2385
+ config: default
2386
+ split: test
2387
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2388
+ metrics:
2389
+ - type: v_measure
2390
+ value: 53.21105960597211
2391
+ - task:
2392
+ type: PairClassification
2393
+ dataset:
2394
+ name: MTEB TwitterSemEval2015
2395
+ type: mteb/twittersemeval2015-pairclassification
2396
+ config: default
2397
+ split: test
2398
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2399
+ metrics:
2400
+ - type: cos_sim_accuracy
2401
+ value: 87.58419264469214
2402
+ - type: cos_sim_ap
2403
+ value: 78.55300004517404
2404
+ - type: cos_sim_f1
2405
+ value: 71.49673530889001
2406
+ - type: cos_sim_precision
2407
+ value: 68.20795400095831
2408
+ - type: cos_sim_recall
2409
+ value: 75.11873350923483
2410
+ - type: dot_accuracy
2411
+ value: 87.58419264469214
2412
+ - type: dot_ap
2413
+ value: 78.55297659559511
2414
+ - type: dot_f1
2415
+ value: 71.49673530889001
2416
+ - type: dot_precision
2417
+ value: 68.20795400095831
2418
+ - type: dot_recall
2419
+ value: 75.11873350923483
2420
+ - type: euclidean_accuracy
2421
+ value: 87.58419264469214
2422
+ - type: euclidean_ap
2423
+ value: 78.55300477331477
2424
+ - type: euclidean_f1
2425
+ value: 71.49673530889001
2426
+ - type: euclidean_precision
2427
+ value: 68.20795400095831
2428
+ - type: euclidean_recall
2429
+ value: 75.11873350923483
2430
+ - type: manhattan_accuracy
2431
+ value: 87.5663110210407
2432
+ - type: manhattan_ap
2433
+ value: 78.49982050876562
2434
+ - type: manhattan_f1
2435
+ value: 71.35488740722104
2436
+ - type: manhattan_precision
2437
+ value: 68.18946862226497
2438
+ - type: manhattan_recall
2439
+ value: 74.82849604221636
2440
+ - type: max_accuracy
2441
+ value: 87.58419264469214
2442
+ - type: max_ap
2443
+ value: 78.55300477331477
2444
+ - type: max_f1
2445
+ value: 71.49673530889001
2446
+ - task:
2447
+ type: PairClassification
2448
+ dataset:
2449
+ name: MTEB TwitterURLCorpus
2450
+ type: mteb/twitterurlcorpus-pairclassification
2451
+ config: default
2452
+ split: test
2453
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2454
+ metrics:
2455
+ - type: cos_sim_accuracy
2456
+ value: 89.09069740365584
2457
+ - type: cos_sim_ap
2458
+ value: 86.22749303724757
2459
+ - type: cos_sim_f1
2460
+ value: 78.36863452005407
2461
+ - type: cos_sim_precision
2462
+ value: 76.49560117302053
2463
+ - type: cos_sim_recall
2464
+ value: 80.33569448721897
2465
+ - type: dot_accuracy
2466
+ value: 89.09069740365584
2467
+ - type: dot_ap
2468
+ value: 86.22750233655673
2469
+ - type: dot_f1
2470
+ value: 78.36863452005407
2471
+ - type: dot_precision
2472
+ value: 76.49560117302053
2473
+ - type: dot_recall
2474
+ value: 80.33569448721897
2475
+ - type: euclidean_accuracy
2476
+ value: 89.09069740365584
2477
+ - type: euclidean_ap
2478
+ value: 86.22749355597347
2479
+ - type: euclidean_f1
2480
+ value: 78.36863452005407
2481
+ - type: euclidean_precision
2482
+ value: 76.49560117302053
2483
+ - type: euclidean_recall
2484
+ value: 80.33569448721897
2485
+ - type: manhattan_accuracy
2486
+ value: 89.08293553770326
2487
+ - type: manhattan_ap
2488
+ value: 86.21913616084771
2489
+ - type: manhattan_f1
2490
+ value: 78.3907031479847
2491
+ - type: manhattan_precision
2492
+ value: 75.0352013517319
2493
+ - type: manhattan_recall
2494
+ value: 82.06036341238065
2495
+ - type: max_accuracy
2496
+ value: 89.09069740365584
2497
+ - type: max_ap
2498
+ value: 86.22750233655673
2499
+ - type: max_f1
2500
+ value: 78.3907031479847
2501
+ ---
2502
+
2503
+ # stellarator/mxbai-embed-large-v1-Q5_K_M-GGUF
2504
+ This model was converted to GGUF format from [`mixedbread-ai/mxbai-embed-large-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2505
+ Refer to the [original model card](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) for more details on the model.
2506
+
2507
+ ## Use with llama.cpp
2508
+ Install llama.cpp through brew (works on Mac and Linux)
2509
+
2510
+ ```bash
2511
+ brew install llama.cpp
2512
+
2513
+ ```
2514
+ Invoke the llama.cpp server or the CLI.
2515
+
2516
+ ### CLI:
2517
+ ```bash
2518
+ llama-cli --hf-repo stellarator/mxbai-embed-large-v1-Q5_K_M-GGUF --hf-file mxbai-embed-large-v1-q5_k_m.gguf -p "The meaning to life and the universe is"
2519
+ ```
2520
+
2521
+ ### Server:
2522
+ ```bash
2523
+ llama-server --hf-repo stellarator/mxbai-embed-large-v1-Q5_K_M-GGUF --hf-file mxbai-embed-large-v1-q5_k_m.gguf -c 2048
2524
+ ```
2525
+
2526
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2527
+
2528
+ Step 1: Clone llama.cpp from GitHub.
2529
+ ```
2530
+ git clone https://github.com/ggerganov/llama.cpp
2531
+ ```
2532
+
2533
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2534
+ ```
2535
+ cd llama.cpp && LLAMA_CURL=1 make
2536
+ ```
2537
+
2538
+ Step 3: Run inference through the main binary.
2539
+ ```
2540
+ ./llama-cli --hf-repo stellarator/mxbai-embed-large-v1-Q5_K_M-GGUF --hf-file mxbai-embed-large-v1-q5_k_m.gguf -p "The meaning to life and the universe is"
2541
+ ```
2542
+ or
2543
+ ```
2544
+ ./llama-server --hf-repo stellarator/mxbai-embed-large-v1-Q5_K_M-GGUF --hf-file mxbai-embed-large-v1-q5_k_m.gguf -c 2048
2545
+ ```