|
2023-10-17 12:46:59,129 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 MultiCorpus: 7936 train + 992 dev + 992 test sentences |
|
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Train: 7936 sentences |
|
2023-10-17 12:46:59,130 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Training Params: |
|
2023-10-17 12:46:59,130 - learning_rate: "5e-05" |
|
2023-10-17 12:46:59,130 - mini_batch_size: "4" |
|
2023-10-17 12:46:59,130 - max_epochs: "10" |
|
2023-10-17 12:46:59,130 - shuffle: "True" |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Plugins: |
|
2023-10-17 12:46:59,130 - TensorboardLogger |
|
2023-10-17 12:46:59,130 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 12:46:59,130 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 12:46:59,130 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,130 Computation: |
|
2023-10-17 12:46:59,130 - compute on device: cuda:0 |
|
2023-10-17 12:46:59,131 - embedding storage: none |
|
2023-10-17 12:46:59,131 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,131 Model training base path: "hmbench-icdar/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" |
|
2023-10-17 12:46:59,131 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,131 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:46:59,131 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 12:47:08,412 epoch 1 - iter 198/1984 - loss 1.95138784 - time (sec): 9.28 - samples/sec: 1840.03 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 12:47:17,762 epoch 1 - iter 396/1984 - loss 1.16755511 - time (sec): 18.63 - samples/sec: 1773.29 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 12:47:27,276 epoch 1 - iter 594/1984 - loss 0.85631491 - time (sec): 28.14 - samples/sec: 1778.06 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 12:47:36,514 epoch 1 - iter 792/1984 - loss 0.69613444 - time (sec): 37.38 - samples/sec: 1762.40 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 12:47:45,647 epoch 1 - iter 990/1984 - loss 0.58337391 - time (sec): 46.52 - samples/sec: 1784.74 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 12:47:54,968 epoch 1 - iter 1188/1984 - loss 0.50718607 - time (sec): 55.84 - samples/sec: 1799.80 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 12:48:04,334 epoch 1 - iter 1386/1984 - loss 0.45379013 - time (sec): 65.20 - samples/sec: 1804.34 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 12:48:13,644 epoch 1 - iter 1584/1984 - loss 0.42012684 - time (sec): 74.51 - samples/sec: 1783.88 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 12:48:22,679 epoch 1 - iter 1782/1984 - loss 0.39242579 - time (sec): 83.55 - samples/sec: 1771.63 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 12:48:31,375 epoch 1 - iter 1980/1984 - loss 0.36710615 - time (sec): 92.24 - samples/sec: 1774.74 - lr: 0.000050 - momentum: 0.000000 |
|
2023-10-17 12:48:31,545 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:48:31,545 EPOCH 1 done: loss 0.3670 - lr: 0.000050 |
|
2023-10-17 12:48:34,796 DEV : loss 0.08705931901931763 - f1-score (micro avg) 0.7042 |
|
2023-10-17 12:48:34,817 saving best model |
|
2023-10-17 12:48:35,263 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:48:44,219 epoch 2 - iter 198/1984 - loss 0.13447725 - time (sec): 8.95 - samples/sec: 1684.39 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 12:48:53,342 epoch 2 - iter 396/1984 - loss 0.12519486 - time (sec): 18.08 - samples/sec: 1746.79 - lr: 0.000049 - momentum: 0.000000 |
|
2023-10-17 12:49:02,617 epoch 2 - iter 594/1984 - loss 0.12768946 - time (sec): 27.35 - samples/sec: 1716.69 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 12:49:12,897 epoch 2 - iter 792/1984 - loss 0.12434640 - time (sec): 37.63 - samples/sec: 1686.98 - lr: 0.000048 - momentum: 0.000000 |
|
2023-10-17 12:49:22,703 epoch 2 - iter 990/1984 - loss 0.12438353 - time (sec): 47.44 - samples/sec: 1692.29 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 12:49:31,761 epoch 2 - iter 1188/1984 - loss 0.12321391 - time (sec): 56.50 - samples/sec: 1711.71 - lr: 0.000047 - momentum: 0.000000 |
|
2023-10-17 12:49:40,930 epoch 2 - iter 1386/1984 - loss 0.12223100 - time (sec): 65.67 - samples/sec: 1715.45 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 12:49:50,575 epoch 2 - iter 1584/1984 - loss 0.12393554 - time (sec): 75.31 - samples/sec: 1718.04 - lr: 0.000046 - momentum: 0.000000 |
|
2023-10-17 12:49:59,914 epoch 2 - iter 1782/1984 - loss 0.12338924 - time (sec): 84.65 - samples/sec: 1734.21 - lr: 0.000045 - momentum: 0.000000 |
|
2023-10-17 12:50:09,035 epoch 2 - iter 1980/1984 - loss 0.12187740 - time (sec): 93.77 - samples/sec: 1745.61 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 12:50:09,216 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:50:09,217 EPOCH 2 done: loss 0.1217 - lr: 0.000044 |
|
2023-10-17 12:50:13,258 DEV : loss 0.11133266240358353 - f1-score (micro avg) 0.7549 |
|
2023-10-17 12:50:13,279 saving best model |
|
2023-10-17 12:50:13,803 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:50:23,285 epoch 3 - iter 198/1984 - loss 0.10677996 - time (sec): 9.48 - samples/sec: 1681.00 - lr: 0.000044 - momentum: 0.000000 |
|
2023-10-17 12:50:32,630 epoch 3 - iter 396/1984 - loss 0.10024302 - time (sec): 18.82 - samples/sec: 1736.37 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 12:50:41,612 epoch 3 - iter 594/1984 - loss 0.09584361 - time (sec): 27.80 - samples/sec: 1762.32 - lr: 0.000043 - momentum: 0.000000 |
|
2023-10-17 12:50:50,953 epoch 3 - iter 792/1984 - loss 0.09534706 - time (sec): 37.15 - samples/sec: 1757.15 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 12:51:00,042 epoch 3 - iter 990/1984 - loss 0.09438992 - time (sec): 46.23 - samples/sec: 1747.78 - lr: 0.000042 - momentum: 0.000000 |
|
2023-10-17 12:51:09,296 epoch 3 - iter 1188/1984 - loss 0.09441971 - time (sec): 55.49 - samples/sec: 1746.25 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 12:51:18,660 epoch 3 - iter 1386/1984 - loss 0.09258276 - time (sec): 64.85 - samples/sec: 1752.18 - lr: 0.000041 - momentum: 0.000000 |
|
2023-10-17 12:51:27,819 epoch 3 - iter 1584/1984 - loss 0.09280077 - time (sec): 74.01 - samples/sec: 1778.28 - lr: 0.000040 - momentum: 0.000000 |
|
2023-10-17 12:51:36,996 epoch 3 - iter 1782/1984 - loss 0.09287512 - time (sec): 83.19 - samples/sec: 1776.15 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 12:51:46,023 epoch 3 - iter 1980/1984 - loss 0.09227744 - time (sec): 92.22 - samples/sec: 1774.99 - lr: 0.000039 - momentum: 0.000000 |
|
2023-10-17 12:51:46,205 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:51:46,205 EPOCH 3 done: loss 0.0921 - lr: 0.000039 |
|
2023-10-17 12:51:49,815 DEV : loss 0.12508752942085266 - f1-score (micro avg) 0.7457 |
|
2023-10-17 12:51:49,839 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:51:59,362 epoch 4 - iter 198/1984 - loss 0.07168588 - time (sec): 9.52 - samples/sec: 1798.75 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 12:52:08,583 epoch 4 - iter 396/1984 - loss 0.06670880 - time (sec): 18.74 - samples/sec: 1756.76 - lr: 0.000038 - momentum: 0.000000 |
|
2023-10-17 12:52:17,944 epoch 4 - iter 594/1984 - loss 0.06287904 - time (sec): 28.10 - samples/sec: 1742.76 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 12:52:27,311 epoch 4 - iter 792/1984 - loss 0.06538020 - time (sec): 37.47 - samples/sec: 1735.71 - lr: 0.000037 - momentum: 0.000000 |
|
2023-10-17 12:52:36,780 epoch 4 - iter 990/1984 - loss 0.06605263 - time (sec): 46.94 - samples/sec: 1743.88 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 12:52:46,097 epoch 4 - iter 1188/1984 - loss 0.06749132 - time (sec): 56.26 - samples/sec: 1734.01 - lr: 0.000036 - momentum: 0.000000 |
|
2023-10-17 12:52:55,393 epoch 4 - iter 1386/1984 - loss 0.07064539 - time (sec): 65.55 - samples/sec: 1746.22 - lr: 0.000035 - momentum: 0.000000 |
|
2023-10-17 12:53:04,548 epoch 4 - iter 1584/1984 - loss 0.07083371 - time (sec): 74.71 - samples/sec: 1753.43 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 12:53:13,831 epoch 4 - iter 1782/1984 - loss 0.07085589 - time (sec): 83.99 - samples/sec: 1755.38 - lr: 0.000034 - momentum: 0.000000 |
|
2023-10-17 12:53:23,039 epoch 4 - iter 1980/1984 - loss 0.07179751 - time (sec): 93.20 - samples/sec: 1755.99 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 12:53:23,235 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:53:23,235 EPOCH 4 done: loss 0.0719 - lr: 0.000033 |
|
2023-10-17 12:53:26,874 DEV : loss 0.15007272362709045 - f1-score (micro avg) 0.7434 |
|
2023-10-17 12:53:26,898 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:53:36,403 epoch 5 - iter 198/1984 - loss 0.05191204 - time (sec): 9.50 - samples/sec: 1735.42 - lr: 0.000033 - momentum: 0.000000 |
|
2023-10-17 12:53:45,521 epoch 5 - iter 396/1984 - loss 0.04935558 - time (sec): 18.62 - samples/sec: 1774.10 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 12:53:54,441 epoch 5 - iter 594/1984 - loss 0.05488619 - time (sec): 27.54 - samples/sec: 1768.34 - lr: 0.000032 - momentum: 0.000000 |
|
2023-10-17 12:54:03,624 epoch 5 - iter 792/1984 - loss 0.05643838 - time (sec): 36.72 - samples/sec: 1766.61 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 12:54:12,819 epoch 5 - iter 990/1984 - loss 0.05590674 - time (sec): 45.92 - samples/sec: 1773.21 - lr: 0.000031 - momentum: 0.000000 |
|
2023-10-17 12:54:21,976 epoch 5 - iter 1188/1984 - loss 0.05482986 - time (sec): 55.08 - samples/sec: 1755.80 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 12:54:31,108 epoch 5 - iter 1386/1984 - loss 0.05386415 - time (sec): 64.21 - samples/sec: 1772.47 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 12:54:40,403 epoch 5 - iter 1584/1984 - loss 0.05340092 - time (sec): 73.50 - samples/sec: 1770.69 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 12:54:49,745 epoch 5 - iter 1782/1984 - loss 0.05379444 - time (sec): 82.85 - samples/sec: 1771.56 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 12:54:59,027 epoch 5 - iter 1980/1984 - loss 0.05432464 - time (sec): 92.13 - samples/sec: 1776.36 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 12:54:59,213 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:54:59,214 EPOCH 5 done: loss 0.0543 - lr: 0.000028 |
|
2023-10-17 12:55:02,841 DEV : loss 0.20846031606197357 - f1-score (micro avg) 0.7471 |
|
2023-10-17 12:55:02,866 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:55:12,114 epoch 6 - iter 198/1984 - loss 0.03953401 - time (sec): 9.25 - samples/sec: 1769.03 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 12:55:21,364 epoch 6 - iter 396/1984 - loss 0.03812773 - time (sec): 18.50 - samples/sec: 1765.39 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 12:55:30,551 epoch 6 - iter 594/1984 - loss 0.04268890 - time (sec): 27.68 - samples/sec: 1778.53 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 12:55:40,019 epoch 6 - iter 792/1984 - loss 0.04138806 - time (sec): 37.15 - samples/sec: 1769.41 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 12:55:49,073 epoch 6 - iter 990/1984 - loss 0.04025963 - time (sec): 46.21 - samples/sec: 1763.61 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 12:55:58,111 epoch 6 - iter 1188/1984 - loss 0.03971711 - time (sec): 55.24 - samples/sec: 1746.68 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 12:56:07,294 epoch 6 - iter 1386/1984 - loss 0.04025272 - time (sec): 64.43 - samples/sec: 1752.53 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 12:56:16,467 epoch 6 - iter 1584/1984 - loss 0.03959126 - time (sec): 73.60 - samples/sec: 1771.43 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 12:56:25,663 epoch 6 - iter 1782/1984 - loss 0.03963302 - time (sec): 82.80 - samples/sec: 1766.72 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 12:56:35,200 epoch 6 - iter 1980/1984 - loss 0.03953747 - time (sec): 92.33 - samples/sec: 1772.28 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 12:56:35,381 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:56:35,381 EPOCH 6 done: loss 0.0396 - lr: 0.000022 |
|
2023-10-17 12:56:39,041 DEV : loss 0.21264401078224182 - f1-score (micro avg) 0.7517 |
|
2023-10-17 12:56:39,065 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:56:48,296 epoch 7 - iter 198/1984 - loss 0.02510474 - time (sec): 9.23 - samples/sec: 1692.24 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 12:56:57,912 epoch 7 - iter 396/1984 - loss 0.02487195 - time (sec): 18.85 - samples/sec: 1760.14 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 12:57:07,100 epoch 7 - iter 594/1984 - loss 0.02627481 - time (sec): 28.03 - samples/sec: 1757.59 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 12:57:16,372 epoch 7 - iter 792/1984 - loss 0.03015138 - time (sec): 37.31 - samples/sec: 1746.05 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 12:57:25,611 epoch 7 - iter 990/1984 - loss 0.02986521 - time (sec): 46.54 - samples/sec: 1749.85 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 12:57:34,638 epoch 7 - iter 1188/1984 - loss 0.02921708 - time (sec): 55.57 - samples/sec: 1768.09 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 12:57:44,038 epoch 7 - iter 1386/1984 - loss 0.02876629 - time (sec): 64.97 - samples/sec: 1773.71 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 12:57:53,266 epoch 7 - iter 1584/1984 - loss 0.02894997 - time (sec): 74.20 - samples/sec: 1770.84 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 12:58:02,591 epoch 7 - iter 1782/1984 - loss 0.03019572 - time (sec): 83.52 - samples/sec: 1765.81 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 12:58:11,832 epoch 7 - iter 1980/1984 - loss 0.02983351 - time (sec): 92.77 - samples/sec: 1764.81 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 12:58:12,018 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:58:12,018 EPOCH 7 done: loss 0.0299 - lr: 0.000017 |
|
2023-10-17 12:58:16,123 DEV : loss 0.23210309445858002 - f1-score (micro avg) 0.7468 |
|
2023-10-17 12:58:16,144 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:58:25,261 epoch 8 - iter 198/1984 - loss 0.02662398 - time (sec): 9.12 - samples/sec: 1763.88 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 12:58:34,458 epoch 8 - iter 396/1984 - loss 0.02320812 - time (sec): 18.31 - samples/sec: 1753.52 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 12:58:43,623 epoch 8 - iter 594/1984 - loss 0.02078829 - time (sec): 27.48 - samples/sec: 1758.96 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 12:58:53,133 epoch 8 - iter 792/1984 - loss 0.01981068 - time (sec): 36.99 - samples/sec: 1754.70 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 12:59:02,118 epoch 8 - iter 990/1984 - loss 0.02018388 - time (sec): 45.97 - samples/sec: 1780.30 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 12:59:11,160 epoch 8 - iter 1188/1984 - loss 0.02143587 - time (sec): 55.02 - samples/sec: 1768.00 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 12:59:20,403 epoch 8 - iter 1386/1984 - loss 0.02108215 - time (sec): 64.26 - samples/sec: 1779.78 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 12:59:29,551 epoch 8 - iter 1584/1984 - loss 0.02050008 - time (sec): 73.41 - samples/sec: 1790.79 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 12:59:38,685 epoch 8 - iter 1782/1984 - loss 0.02034437 - time (sec): 82.54 - samples/sec: 1790.41 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 12:59:47,933 epoch 8 - iter 1980/1984 - loss 0.02018234 - time (sec): 91.79 - samples/sec: 1782.77 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 12:59:48,133 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 12:59:48,133 EPOCH 8 done: loss 0.0203 - lr: 0.000011 |
|
2023-10-17 12:59:51,750 DEV : loss 0.23719041049480438 - f1-score (micro avg) 0.7626 |
|
2023-10-17 12:59:51,774 saving best model |
|
2023-10-17 12:59:52,342 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 13:00:01,612 epoch 9 - iter 198/1984 - loss 0.01128630 - time (sec): 9.27 - samples/sec: 1795.34 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 13:00:10,749 epoch 9 - iter 396/1984 - loss 0.00943051 - time (sec): 18.41 - samples/sec: 1820.75 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 13:00:19,875 epoch 9 - iter 594/1984 - loss 0.01123883 - time (sec): 27.53 - samples/sec: 1777.99 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 13:00:29,376 epoch 9 - iter 792/1984 - loss 0.01104369 - time (sec): 37.03 - samples/sec: 1767.64 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 13:00:38,816 epoch 9 - iter 990/1984 - loss 0.01110156 - time (sec): 46.47 - samples/sec: 1763.83 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 13:00:48,150 epoch 9 - iter 1188/1984 - loss 0.01314728 - time (sec): 55.81 - samples/sec: 1775.48 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 13:00:57,267 epoch 9 - iter 1386/1984 - loss 0.01317730 - time (sec): 64.92 - samples/sec: 1764.93 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 13:01:06,731 epoch 9 - iter 1584/1984 - loss 0.01382017 - time (sec): 74.39 - samples/sec: 1760.10 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 13:01:15,926 epoch 9 - iter 1782/1984 - loss 0.01358330 - time (sec): 83.58 - samples/sec: 1759.37 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 13:01:25,451 epoch 9 - iter 1980/1984 - loss 0.01373408 - time (sec): 93.11 - samples/sec: 1756.06 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 13:01:25,664 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 13:01:25,665 EPOCH 9 done: loss 0.0138 - lr: 0.000006 |
|
2023-10-17 13:01:29,408 DEV : loss 0.2416975200176239 - f1-score (micro avg) 0.7531 |
|
2023-10-17 13:01:29,434 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 13:01:38,722 epoch 10 - iter 198/1984 - loss 0.00724275 - time (sec): 9.29 - samples/sec: 1731.53 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 13:01:48,062 epoch 10 - iter 396/1984 - loss 0.00878620 - time (sec): 18.63 - samples/sec: 1741.75 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 13:01:57,341 epoch 10 - iter 594/1984 - loss 0.00792020 - time (sec): 27.91 - samples/sec: 1788.05 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 13:02:06,885 epoch 10 - iter 792/1984 - loss 0.00864729 - time (sec): 37.45 - samples/sec: 1766.05 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 13:02:16,926 epoch 10 - iter 990/1984 - loss 0.00875296 - time (sec): 47.49 - samples/sec: 1730.47 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 13:02:26,316 epoch 10 - iter 1188/1984 - loss 0.00957040 - time (sec): 56.88 - samples/sec: 1731.11 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 13:02:35,536 epoch 10 - iter 1386/1984 - loss 0.00980326 - time (sec): 66.10 - samples/sec: 1733.47 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 13:02:44,848 epoch 10 - iter 1584/1984 - loss 0.00931466 - time (sec): 75.41 - samples/sec: 1747.44 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 13:02:53,940 epoch 10 - iter 1782/1984 - loss 0.00906989 - time (sec): 84.50 - samples/sec: 1750.28 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 13:03:03,073 epoch 10 - iter 1980/1984 - loss 0.00906925 - time (sec): 93.64 - samples/sec: 1748.58 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 13:03:03,259 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 13:03:03,259 EPOCH 10 done: loss 0.0092 - lr: 0.000000 |
|
2023-10-17 13:03:06,977 DEV : loss 0.25551512837409973 - f1-score (micro avg) 0.7566 |
|
2023-10-17 13:03:07,490 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 13:03:07,492 Loading model from best epoch ... |
|
2023-10-17 13:03:09,090 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG |
|
2023-10-17 13:03:12,571 |
|
Results: |
|
- F-score (micro) 0.7774 |
|
- F-score (macro) 0.6822 |
|
- Accuracy 0.6592 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
LOC 0.8343 0.8611 0.8475 655 |
|
PER 0.6920 0.7758 0.7315 223 |
|
ORG 0.5192 0.4252 0.4675 127 |
|
|
|
micro avg 0.7680 0.7871 0.7774 1005 |
|
macro avg 0.6819 0.6874 0.6822 1005 |
|
weighted avg 0.7629 0.7871 0.7737 1005 |
|
|
|
2023-10-17 13:03:12,571 ---------------------------------------------------------------------------------------------------- |
|
|