How to use transformers for batch inference

I use transformers to train text classification models,for a single text, it can be inferred normally. The code is as follows

from transformers import BertTokenizer, TFAlbertForSequenceClassification
text = 'This is a sentence'
model_path ='../albert_chinese_tiny'
tokenizer = BertTokenizer.from_pretrained(model_path)
model = TFAlbertForSequenceClassification.from_pretrained('../model_tf/20210818')
encoding = tokenizer(text, truncation=True, padding=True, max_length=30, return_tensors="tf")
result = model(encoding)

When I predict more than one text at a time, an error will be reported. The code is as follows

texts = ['This is a sentence', 'This is another sentence']
encodings = []
model_path ='../albert_chinese_tiny'
tokenizer = BertTokenizer.from_pretrained(model_path)
model = TFAlbertForSequenceClassification.from_pretrained('../model_tf/20210818')
for text in texts:
    encoding = tokenizer(text, truncation=True, padding=True, max_length=30, return_tensors="tf")
    encodings.append(encoding)
result = model(np.array(encodings))

The error information is as follows:
tensorflow.python.framework.errors_impl.InvalidArgumentError: Value for attr ‘Tindices’ of string is not in the list of allowed values: int32, int64
; NodeDef: {{node ResourceGather}}; Op<name=ResourceGather; signature=resource:resource, indices:Tindices → output:dtype; attr=batch_dims:int,default=0; attr=validate_indices:bool,default=true; attr=dtype:type; attr=Tindices:type,allowed=[DT_INT32, DT_INT64]; is_stateful=true> [Op:ResourceGather]

This question has been answered here.