File size: 8,890 Bytes
d43ebac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.pytorch_utils import Conv1D
from transformers.utils import ModelOutput
from transformers import GPT2PreTrainedModel, GPT2Model
from .backpack_config import BackpackGPT2Config
### Backpack-Specific
class BackpackGPT2PreTrainedModel(GPT2PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias"]
config_class = BackpackGPT2Config
base_model_prefix = "backpack"
is_parallelizable = True
supports_gradient_checkpointing = False
_no_split_modules = ["GPT2Block", "BackpackNoMixBlock"]
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
class BackpackMLP(nn.Module):
def __init__(self, embed_dim, intermediate_dim, out_dim, config):
super().__init__()
self.c_fc = Conv1D(intermediate_dim, embed_dim)
self.c_proj = Conv1D(out_dim, intermediate_dim)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(
self, hidden_states: Optional[Tuple[torch.FloatTensor]]
) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BackpackNoMixBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.ln_2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.mlp = BackpackMLP(config.n_embd, config.n_embd * 4, config.n_embd, config)
self.resid_dropout1 = nn.Dropout(config.resid_pdrop)
self.resid_dropout2 = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states, residual):
residual = self.resid_dropout1(hidden_states) + residual
hidden_states = self.ln_1(residual)
mlp_out = self.mlp(hidden_states)
residual = self.resid_dropout2(mlp_out) + residual
hidden_states = self.ln_2(residual)
return hidden_states
class BackpackSenseNetwork(nn.Module):
def __init__(self, config, num_senses, device=None, dtype=None):
super().__init__()
self.num_senses = num_senses
# self.embeddings = embeddings
self.n_embd = config.n_embd
self.dropout = nn.Dropout(config.embd_pdrop)
self.block = BackpackNoMixBlock(config)
self.ln = nn.LayerNorm(self.n_embd, eps=config.layer_norm_epsilon)
self.final_mlp = BackpackMLP(
embed_dim=config.n_embd,
intermediate_dim=config.sense_intermediate_scale * config.n_embd,
out_dim=config.n_embd * config.num_senses,
config=config,
)
def forward(self, input_embeds):
residual = self.dropout(input_embeds)
hidden_states = self.ln(residual)
hidden_states = self.block(hidden_states, residual)
senses = self.final_mlp(hidden_states)
bs, s, nvd = senses.shape
return senses.reshape(bs, s, self.num_senses, self.n_embd).transpose(
1, 2
) # (bs, nv, s, d)
class BackpackWeightNetwork(nn.Module):
def __init__(self, num_senses, embed_dim):
super().__init__()
self.n_embd = embed_dim
self.num_senses = num_senses
self.embed_per_sense = embed_dim // num_senses
self.c_attn = nn.Linear(embed_dim, 2 * num_senses * self.embed_per_sense)
self.softmax_scale = None
def forward(self, encoded):
b, s, d = encoded.shape
encoded = self.c_attn(encoded) # (b, s, 2*d)
encoded = encoded.reshape(
b, s, 2, self.num_senses, self.embed_per_sense
) # (b, s, 2, nv, d//nv)
batch_size, seqlen = encoded.shape[0], encoded.shape[1]
# compute scores & mask
q, k = encoded.unbind(dim=2)
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
causal_mask = torch.triu(
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
)
scores = scores + causal_mask.to(dtype=scores.dtype)
return torch.softmax(scores, dim=-1, dtype=q.dtype)
@dataclass
class BackpackGPT2BaseModelOutput(ModelOutput):
hidden_states: torch.FloatTensor = None
contextualization: torch.FloatTensor = None
class BackpackGPT2Model(BackpackGPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r".*attn.masked_bias", r".*attn.bias"]
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.n_embd
self.num_senses = config.num_senses
self.gpt2_model = GPT2Model(config)
self.sense_network = BackpackSenseNetwork(
config, self.num_senses, self.gpt2_model.wte
)
self.word_embeddings = self.gpt2_model.wte
self.position_embeddings = self.gpt2_model.wpe
self.sense_weight_net = BackpackWeightNetwork(self.num_senses, self.embed_dim)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
def get_num_senses(self):
return self.num_senses
def get_word_embeddings(self):
return self.word_embeddings
def get_sense_network(self):
return self.sense_network
def forward(self, input_ids, position_ids: Optional[torch.LongTensor] = None):
# Compute senses
sense_input_embeds = self.word_embeddings(input_ids)
senses = self.sense_network(sense_input_embeds) # (bs, nv, s, d)
# Compute contextualization weights
contextl_hidden_states = self.gpt2_model(
input_ids, position_ids=position_ids
).last_hidden_state # (bs, s, d)
contextualization = self.sense_weight_net(
contextl_hidden_states
) # (bs, nv, s, s)
# Compute resulting outputs
hidden_states = torch.sum(
contextualization @ senses, dim=1
) # (bs, nv, s, d) -> (bs, s, d)
# divide hidden_states by 1 / num_senses
hidden_states = hidden_states / self.num_senses
return BackpackGPT2BaseModelOutput(
hidden_states=hidden_states,
contextualization=contextualization,
)
def run_with_custom_contextualization(self, input_ids, contextualization):
# Compute senses
sense_input_embeds = self.word_embeddings(input_ids)
senses = self.sense_network(sense_input_embeds) # (bs, nv, s, d)
# Compute resulting outputs
hidden_states = torch.sum(
contextualization @ senses, dim=1
) # (bs, nv, s, d) -> (bs, s, d)
return BackpackGPT2BaseModelOutput(
hidden_states=hidden_states,
contextualization=contextualization,
)
@dataclass
class BackpackGPT2LMHeadModelOutput(ModelOutput):
logits: torch.FloatTensor = None
contextualization: torch.FloatTensor = None
class BackpackGPT2LMHeadModel(BackpackGPT2PreTrainedModel):
_keys_to_ignore_on_load_missing = [r".*attn.masked_bias", r".*attn.bias"]
def __init__(self, config):
super().__init__(config)
self.backpack = BackpackGPT2Model(config)
# Model parallel
self.model_parallel = False
self.device_map = None
def get_lm_head(self):
return self.lm_head
def forward(self, input_ids, position_ids=None):
outputs = self.backpack(input_ids, position_ids=position_ids)
hidden_states, contextualization = (
outputs.hidden_states,
outputs.contextualization,
)
# unembed the hidden_states
lm_logits = torch.einsum(
"bsd,nd->bsn", hidden_states, self.backpack.word_embeddings.weight
)
return BackpackGPT2LMHeadModelOutput(
logits=lm_logits,
contextualization=contextualization,
)
def run_with_custom_contextualization(self, input_ids, contextualization):
outputs = self.backpack.run_with_custom_contextualization(
input_ids, contextualization
)
hidden_states, contextualization = (
outputs.hidden_states,
outputs.contextualization,
)
lm_logits = self.lm_head(hidden_states)
return BackpackGPT2LMHeadModelOutput(
logits=lm_logits,
contextualization=contextualization,
)
|