--- datasets: - HuggingFaceH4/ultrachat_200k - HuggingFaceH4/ultrafeedback_binarized - meta-math/MetaMathQA - WizardLM/WizardLM_evol_instruct_V2_196k - Intel/orca_dpo_pairs language: - en tags: - causal-lm extra_gated_fields: Name: text Email: text Country: text Organization or Affiliation: text I ALLOW Stability AI to email me about new model releases: checkbox --- # `StableLM Zephyr 3B` ## Model Description `StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on [MT Bench](https://tatsu-lab.github.io/alpaca_eval/) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/) ## Usage `StableLM Zephyr 3B` uses the following instruction format: ``` <|user|> List 10 synonyms for the word "tiny"<|endoftext|> <|assistant|> 1. Dwarf 2. Little 3. Petite 4. Miniature 5. Small 6. Compact 7. Cramped 8. Wee 9. Nibble 10. Crumble<|endoftext|> ``` This format is also available through the tokenizer's `apply_chat_template` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b') model = AutoModelForCausalLM.from_pretrained( 'stabilityai/stablelm-zephyr-3b', trust_remote_code=True, device_map="auto" ) prompt = [{'role': 'user', 'content': 'List 10 synonyms for the word "tiny"'}] inputs = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors='pt') tokens = model.generate( inputs.to(model.device), max_new_tokens=1024, temperature=0.8, do_sample=True ) print(tokenizer.decode(tokens[0], skip_special_tokens=False)) ``` ## Model Details * **Developed by**: [Stability AI](https://stability.ai/) * **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture. * **Language(s)**: English * **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git) * **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) * **License**: TBD * **Contact**: For questions and comments about the model, please email `lm@stability.ai` ### Training Dataset The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): 1. SFT Datasets - HuggingFaceH4/ultrachat_200k - meta-math/MetaMathQA - Wizard Dataset - Open-Orca/SlimOrca 2. Preference Datasets: - HuggingFaceH4/ultrafeedback_binarized - Intel/orca_dpo_pairs ### Training Procedure ## Performance ### MT Bench and Alpaca Bench mt_bench_plot | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) | |-------------|-----|----|---------------|--------------| | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 | | Stable Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 | | MPT-Chat | 7B |dSFT |5.42| -| | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83| | Mistral-Instructv0.1 | 7B| - | 6.84 |-| | Zephyr-7b-α |7B| dDPO| 6.88| -| | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 | | Falcon-Instruct | 40B |dSFT |5.17 |45.71| | Guanaco | 65B | SFT |6.41| 71.80| | Llama2-Chat | 70B |RLHF |6.86| 92.66| | Vicuna v1.3 | 33B |dSFT |7.12 |88.99| | WizardLM v1.0 | 70B |dSFT |7.71 |-| | Xwin-LM v0.1 | 70B |dPPO |- |95.57| | GPT-3.5-turbo | - |RLHF |7.94 |89.37| | Claude 2 | - |RLHF |8.06| 91.36| | GPT-4 | -| RLHF |8.99| 95.28| ## Other benchmark: 1. **HuggingFace OpenLLM Leaderboard** | Metric | Value | |-----------------------|---------------------------| | ARC (25-shot) | 47.0 | | HellaSwag (10-shot) | 74.2 | | MMLU (5-shot) | 46.3 | | TruthfulQA (0-shot) | 46.5 | | Winogrande (5-shot) | 65.5 | | GSM8K (5-shot) | 42.3 | 2. **BigBench**: - Average: 35.26 - Details: | Task | Version | Metric | Value | Stderr | |-----------------------------------------------------|---------|-------------------------|-------|--------| | bigbench_causal_judgement | 0 | multiple_choice_grade | 0.5316| 0.0363 | | bigbench_date_understanding | 0 | multiple_choice_grade | 0.4363| 0.0259 | | bigbench_disambiguation_qa | 0 | multiple_choice_grade | 0.3217| 0.0291 | | bigbench_dyck_languages | 0 | multiple_choice_grade | 0.1450| 0.0111 | | bigbench_formal_fallacies_syllogisms_negation | 0 | multiple_choice_grade | 0.4982| 0.0042 | | bigbench_geometric_shapes | 0 | multiple_choice_grade | 0.1086| 0.0164 | | bigbench_hyperbaton | 0 | exact_str_match | 0.0000| 0.0000 | | bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 0.5232| 0.0022 | | bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 0.2480| 0.0193 | | bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 0.1814| 0.0146 | | bigbench_movie_recommendation | 0 | multiple_choice_grade | 0.4067| 0.0284 | | bigbench_navigate | 0 | multiple_choice_grade | 0.2580| 0.0196 | | bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 0.5990| 0.0155 | | bigbench_ruin_names | 0 | multiple_choice_grade | 0.4370| 0.0111 | | bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 0.3951| 0.0231 | | bigbench_snarks | 0 | multiple_choice_grade | 0.2265| 0.0133 | | bigbench_sports_understanding | 0 | multiple_choice_grade | 0.6464| 0.0356 | | bigbench_temporal_sequences | 0 | multiple_choice_grade | 0.5091| 0.0159 | | bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 0.2680| 0.0140 | | bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 0.1856| 0.0110 | | bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 0.1269| 0.0080 | 3. **AGI Benchmark**: - Average: 33.23 - Details: | Task |Version| Metric |Value | |Stderr| |------------------------------|------:|--------|-----:|---|-----:| |agieval_aqua_rat | 0|acc |0.2126|± |0.0257| | | |acc_norm|0.1890|± |0.0246| |agieval_gaokao_biology | 0|acc |0.2571|± |0.0302| | | |acc_norm|0.3143|± |0.0321| |agieval_gaokao_chemistry | 0|acc |0.2464|± |0.0300| | | |acc_norm|0.2899|± |0.0316| |agieval_gaokao_chinese | 0|acc |0.2927|± |0.0291| | | |acc_norm|0.3049|± |0.0294| |agieval_gaokao_english | 0|acc |0.6176|± |0.0278| | | |acc_norm|0.6438|± |0.0274| |agieval_gaokao_geography | 0|acc |0.3015|± |0.0326| | | |acc_norm|0.3065|± |0.0328| |agieval_gaokao_history | 0|acc |0.3106|± |0.0303| | | |acc_norm|0.3319|± |0.0308| |agieval_gaokao_mathqa | 0|acc |0.2650|± |0.0236| | | |acc_norm|0.2707|± |0.0237| |agieval_gaokao_physics | 0|acc |0.3450|± |0.0337| | | |acc_norm|0.3550|± |0.0339| |agieval_logiqa_en | 0|acc |0.2980|± |0.0179| | | |acc_norm|0.3195|± |0.0183| |agieval_logiqa_zh | 0|acc |0.2842|± |0.0177| | | |acc_norm|0.3318|± |0.0185| |agieval_lsat_ar | 0|acc |0.2000|± |0.0264| | | |acc_norm|0.2043|± |0.0266| |agieval_lsat_lr | 0|acc |0.3176|± |0.0206| | | |acc_norm|0.3275|± |0.0208| |agieval_lsat_rc | 0|acc |0.4312|± |0.0303| | | |acc_norm|0.4201|± |0.0301| |agieval_sat_en | 0|acc |0.6117|± |0.0340| | | |acc_norm|0.6117|± |0.0340| |agieval_sat_en_without_passage| 0|acc |0.3398|± |0.0331| | | |acc_norm|0.3495|± |0.0333| |agieval_sat_math | 0|acc |0.3182|± |0.0315| | | |acc_norm|0.2909|± |0.0307| ### Training Infrastructure * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes. * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training. ## Use and Limitations ### Intended Use The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications. ### Limitations and Bias ​ This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses. Through internal testing, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others.