File size: 7,638 Bytes
bc7e10c 48d36f2 bc7e10c 5bf681c bc7e10c 5bf681c bc7e10c 201cb64 bc7e10c e3d1186 bc7e10c 7c8b487 bc7e10c 72bc7e4 7c8b487 bc7e10c 18fd9a0 bc7e10c 72bc7e4 27133b0 bc7e10c 3da1353 9c052b0 3da1353 bc7e10c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
language:
- en
tags:
- causal-lm
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
---
# `Stable Zephyr 3B`
## Model Description
`Stable Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
[MT Bench](https://tatsu-lab.github.io/alpaca_eval/) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
## Usage
Get started generating text with `Stable Zephyr 3B` by using the following code snippet:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stable-zephyr-3b-dpo")
model = AutoModelForCausalLM.from_pretrained(
"stabilityai/stable-zephyr-3b-dpo",
trust_remote_code=True,
torch_dtype="auto",
)
model.cuda()
prompt = "<|user|>\nIn the field of quantum physics, what is superposition, and how does it relate to the phenomenon of quantum entanglement?<|endoftext|>\n<|assistant|>\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
tokens = model.generate(
**inputs,
max_new_tokens=1024,
temperature=0.7,
top_p=0.95,
do_sample=True,
)
print(tokenizer.decode(tokens[0], skip_special_tokens=True))
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `Stable Zephyr 3B` models are auto-regressive language models based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
* **License**: TBD
* **Contact**: For questions and comments about the model, please email `[email protected]`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- Wizard Dataset
- Open-Orca/SlimOrca
2. Preference Datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
### Training Procedure
## Performance
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F63466107f7bd6326925fc770%2F8p7fwITw63tSvEYbP6Uh0.png%3C%2Fspan%3E)
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| **Stable Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
| Stable Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instructv0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
## Other benchmark:
| Metric | Value |
|-----------------------|---------------------------|
| ARC (25-shot) | |
| HellaSwag (10-shot) | |
| MMLU (5-shot) | |
| TruthfulQA (0-shot) | |
| Winogrande (5-shot) | |
| GSM8K (5-shot) | 0.423 |
| Human Eval | |
- BigBench: 0.3526.
| Task | Version | Metric | Value | Stderr |
|-----------------------------------------------------|---------|-------------------------|-------|--------|
| bigbench_causal_judgement | 0 | multiple_choice_grade | 0.5316| 0.0363 |
| bigbench_date_understanding | 0 | multiple_choice_grade | 0.4363| 0.0259 |
| bigbench_disambiguation_qa | 0 | multiple_choice_grade | 0.3217| 0.0291 |
| bigbench_dyck_languages | 0 | multiple_choice_grade | 0.1450| 0.0111 |
| bigbench_formal_fallacies_syllogisms_negation | 0 | multiple_choice_grade | 0.4982| 0.0042 |
| bigbench_geometric_shapes | 0 | multiple_choice_grade | 0.1086| 0.0164 |
| bigbench_hyperbaton | 0 | exact_str_match | 0.0000| 0.0000 |
| bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 0.5232| 0.0022 |
| bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 0.2480| 0.0193 |
| bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 0.1814| 0.0146 |
| bigbench_movie_recommendation | 0 | multiple_choice_grade | 0.4067| 0.0284 |
| bigbench_navigate | 0 | multiple_choice_grade | 0.2580| 0.0196 |
| bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 0.5990| 0.0155 |
| bigbench_ruin_names | 0 | multiple_choice_grade | 0.4370| 0.0111 |
| bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 0.3951| 0.0231 |
| bigbench_snarks | 0 | multiple_choice_grade | 0.2265| 0.0133 |
| bigbench_sports_understanding | 0 | multiple_choice_grade | 0.6464| 0.0356 |
| bigbench_temporal_sequences | 0 | multiple_choice_grade | 0.5091| 0.0159 |
| bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 0.2680| 0.0140 |
| bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 0.1856| 0.0110 |
| bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 0.1269| 0.0080 |
### Training Infrastructure
* **Hardware**: `Stable Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
## Use and Limitations
### Intended Use
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.
### Limitations and Bias
As a base model, this model may exhibit unreliable, unsafe, or other undesirable behaviors that must be corrected through evaluation and fine-tuning prior to deployment. The pre-training dataset may have contained offensive or inappropriate content, even after applying data cleansing filters, which can be reflected in the model-generated text. We recommend that users exercise caution when using these models in production systems. Do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. |