File size: 5,537 Bytes
937cd23
322776f
 
 
 
 
 
937cd23
6711b9e
 
 
 
 
 
937cd23
322776f
f9dd644
322776f
 
 
f9dd644
322776f
27d100e
e401142
322776f
 
d8f32f7
322776f
 
 
854a73a
322776f
f9dd644
322776f
f9dd644
322776f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a7219
322776f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9dd644
322776f
 
6711b9e
322776f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b865cf
 
 
 
 
322776f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
language:
- ja
tags:
- japanese-stablelm
- causal-lm
pipeline_tag: text-generation
license: apache-2.0
extra_gated_fields:
  Name: text
  Email: text
  Country: text
  Organization or Affiliation: text
  I allow Stability AI to contact me about information related to its models and research: checkbox
---

# Japanese Stable LM Instruct Gamma 7B

## Model Description

This is a 7B-parameter decoder-only Japanese language model fine-tuned on instruction-following datasets, built on top of the base model [Japanese Stable LM Base Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b).

*If you are in search of a smaller model, please check [Japanese StableLM-3B-4E1T Instruct](https://huggingface.co/stabilityai/japanese-stablelm-3b-4e1t-base/blob/main/README.md).*

## Usage

Ensure you are using Transformers 4.34.0 or newer.

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("stabilityai/japanese-stablelm-instruct-gamma-7b")
model = AutoModelForCausalLM.from_pretrained(
  "stabilityai/japanese-stablelm-instruct-gamma-7b",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

def build_prompt(user_query, inputs="", sep="\n\n### "):
    sys_msg = "ไปฅไธ‹ใฏใ€ใ‚ฟใ‚นใ‚ฏใ‚’่ชฌๆ˜Žใ™ใ‚‹ๆŒ‡็คบใจใ€ๆ–‡่„ˆใฎใ‚ใ‚‹ๅ…ฅๅŠ›ใฎ็ต„ใฟๅˆใ‚ใ›ใงใ™ใ€‚่ฆๆฑ‚ใ‚’้ฉๅˆ‡ใซๆบ€ใŸใ™ๅฟœ็ญ”ใ‚’ๆ›ธใใชใ•ใ„ใ€‚"
    p = sys_msg
    roles = ["ๆŒ‡็คบ", "ๅฟœ็ญ”"]
    msgs = [": \n" + user_query, ": \n"]
    if inputs:
        roles.insert(1, "ๅ…ฅๅŠ›")
        msgs.insert(1, ": \n" + inputs)
    for role, msg in zip(roles, msgs):
        p += sep + role + msg
    return p

# Infer with prompt without any additional input
user_inputs = {
    "user_query": "ไธŽใˆใ‚‰ใ‚ŒใŸใ“ใจใ‚ใ–ใฎๆ„ๅ‘ณใ‚’ๅฐๅญฆ็”Ÿใงใ‚‚ๅˆ†ใ‹ใ‚‹ใ‚ˆใ†ใซๆ•™ใˆใฆใใ ใ•ใ„ใ€‚",
    "inputs": "ๆƒ…ใ‘ใฏไบบใฎใŸใ‚ใชใ‚‰ใš"
}
prompt = build_prompt(**user_inputs)

input_ids = tokenizer.encode(
    prompt, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=256,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
```

## Model Details

* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `Japanese Stable LM Instruct Gamma 7B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: Japanese
* **License**: This model is licensed under [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
* **Contact**: For questions and comments about the model, please join [Stable Community Japan](https://discord.gg/StableJP). For future announcements / information about Stability AI models, research, and events, please follow https://twitter.com/StabilityAI_JP.

### Model Architecture

For details, please see Mistral AI's [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/). 


### Training Datasets

- [Japanese translation of the Databricks Dolly-15k dataset](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
- [Japanese translation of the subset of the Anthropic HH dataset](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k)
- [Wikinews](https://ja.wikinews.org/wi) [subset](https://huggingface.co/datasets/fujiki/llm-japanese-dataset_wikinews) of the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset)



## Use and Limitations

### Intended Use

The model is intended to be used by all individuals as a foundational model for application-specific fine-tuning without strict limitations on commercial use.

### Limitations and bias

The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model-generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups.

## Credits

The fine-tuning was carried out by [Fujiki Nakamura](https://huggingface.co/fujiki).
Other aspects, including data preparation and evaluation, were handled by the Language Team of Stability AI Japan, notably [Meng Lee](https://huggingface.co/leemeng), [Makoto Shing](https://huggingface.co/mkshing), [Paul McCann](https://huggingface.co/polm-stability), [Naoki Orii](https://huggingface.co/mrorii), and  [Takuya Akiba](https://huggingface.co/iwiwi).


## Acknowledgements

This model is based on Mistral-7B-v0.1 released by the Mistral AI team. We are grateful to the Mistral AI team for providing such an excellent base model.

We are grateful for the contributions of the EleutherAI Polyglot-JA team in helping us to collect a large amount of pre-training data in Japanese. Polyglot-JA members includes Hyunwoong Ko (Project Lead), Fujiki Nakamura (originally started this project when he commited to the Polyglot team), Yunho Mo, Minji Jung, KeunSeok Im, and Su-Kyeong Jang.

We are also appreciative of [AI Novelist/Sta (Bit192, Inc.)](https://ai-novel.com/index.php) and the numerous contributors from [Stable Community Japan](https://discord.gg/VPrcE475HB) for assisting us in gathering a large amount of high-quality Japanese textual data for model training.