Create llama_inference_class.py
Browse files- llama_inference_class.py +96 -0
llama_inference_class.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import quant
|
4 |
+
|
5 |
+
from gptq import GPTQ
|
6 |
+
from utils import find_layers, DEV, set_seed, get_wikitext2, get_ptb, get_c4, get_ptb_new, get_c4_new, get_loaders
|
7 |
+
import transformers
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
|
10 |
+
class ModelInference:
|
11 |
+
def __init__(self, model_name, load=None, wbits=16, groupsize=-1):
|
12 |
+
self.model_name = model_name
|
13 |
+
self.load = load
|
14 |
+
self.wbits = wbits
|
15 |
+
self.groupsize = groupsize
|
16 |
+
if self.load:
|
17 |
+
self.model = self.load_quant(self.model_name, self.load, self.wbits, self.groupsize)
|
18 |
+
else:
|
19 |
+
self.model = self.get_llama(self.model_name)
|
20 |
+
self.model.eval()
|
21 |
+
self.model.to(DEV)
|
22 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
|
23 |
+
|
24 |
+
def get_llama(model):
|
25 |
+
|
26 |
+
def skip(*args, **kwargs):
|
27 |
+
pass
|
28 |
+
|
29 |
+
torch.nn.init.kaiming_uniform_ = skip
|
30 |
+
torch.nn.init.uniform_ = skip
|
31 |
+
torch.nn.init.normal_ = skip
|
32 |
+
from transformers import LlamaForCausalLM
|
33 |
+
model = LlamaForCausalLM.from_pretrained(model, torch_dtype='auto')
|
34 |
+
model.seqlen = 2048
|
35 |
+
return model
|
36 |
+
|
37 |
+
def load_quant(model, checkpoint, wbits, groupsize=-1, fused_mlp=True, eval=True, warmup_autotune=True):
|
38 |
+
from transformers import LlamaConfig, LlamaForCausalLM
|
39 |
+
config = LlamaConfig.from_pretrained(model)
|
40 |
+
|
41 |
+
def noop(*args, **kwargs):
|
42 |
+
pass
|
43 |
+
|
44 |
+
torch.nn.init.kaiming_uniform_ = noop
|
45 |
+
torch.nn.init.uniform_ = noop
|
46 |
+
torch.nn.init.normal_ = noop
|
47 |
+
|
48 |
+
torch.set_default_dtype(torch.half)
|
49 |
+
transformers.modeling_utils._init_weights = False
|
50 |
+
torch.set_default_dtype(torch.half)
|
51 |
+
model = LlamaForCausalLM(config)
|
52 |
+
torch.set_default_dtype(torch.float)
|
53 |
+
if eval:
|
54 |
+
model = model.eval()
|
55 |
+
layers = find_layers(model)
|
56 |
+
for name in ['lm_head']:
|
57 |
+
if name in layers:
|
58 |
+
del layers[name]
|
59 |
+
quant.make_quant_linear(model, layers, wbits, groupsize)
|
60 |
+
|
61 |
+
del layers
|
62 |
+
|
63 |
+
print('Loading model ...')
|
64 |
+
if checkpoint.endswith('.safetensors'):
|
65 |
+
from safetensors.torch import load_file as safe_load
|
66 |
+
model.load_state_dict(safe_load(checkpoint), strict=False)
|
67 |
+
else:
|
68 |
+
model.load_state_dict(torch.load(checkpoint), strict=False)
|
69 |
+
|
70 |
+
if eval:
|
71 |
+
quant.make_quant_attn(model)
|
72 |
+
quant.make_quant_norm(model)
|
73 |
+
if fused_mlp:
|
74 |
+
quant.make_fused_mlp(model)
|
75 |
+
if warmup_autotune:
|
76 |
+
quant.autotune_warmup_linear(model, transpose=not (eval))
|
77 |
+
if eval and fused_mlp:
|
78 |
+
quant.autotune_warmup_fused(model)
|
79 |
+
model.seqlen = 2048
|
80 |
+
print('Done.')
|
81 |
+
|
82 |
+
return model
|
83 |
+
|
84 |
+
def generate_text(self, text, min_length=10, max_length=50, top_p=0.95, temperature=0.8):
|
85 |
+
input_ids = self.tokenizer.encode(text, return_tensors="pt").to(DEV)
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
generated_ids = self.model.generate(
|
89 |
+
input_ids,
|
90 |
+
do_sample=True,
|
91 |
+
min_length=min_length,
|
92 |
+
max_length=max_length,
|
93 |
+
top_p=top_p,
|
94 |
+
temperature=temperature,
|
95 |
+
)
|
96 |
+
return self.tokenizer.decode([el.item() for el in generated_ids[0]])
|